acidportal

- 😈 Worlds smallest Evil Portal on a LilyGo T-QT
git clone git://git.acid.vegas/acidportal.git
Log | Files | Refs | Archive | README | LICENSE

User_Setup.h (18619B)

      1 //                            USER DEFINED SETTINGS
      2 //   Set driver type, fonts to be loaded, pins used and SPI control method etc
      3 //
      4 //   See the User_Setup_Select.h file if you wish to be able to define multiple
      5 //   setups and then easily select which setup file is used by the compiler.
      6 //
      7 //   If this file is edited correctly then all the library example sketches should
      8 //   run without the need to make any more changes for a particular hardware setup!
      9 //   Note that some sketches are designed for a particular TFT pixel width/height
     10 
     11 // User defined information reported by "Read_User_Setup" test & diagnostics example
     12 #define USER_SETUP_INFO "User_Setup"
     13 
     14 // Define to disable all #warnings in library (can be put in User_Setup_Select.h)
     15 //#define DISABLE_ALL_LIBRARY_WARNINGS
     16 
     17 // ##################################################################################
     18 //
     19 // Section 1. Call up the right driver file and any options for it
     20 //
     21 // ##################################################################################
     22 
     23 // Define STM32 to invoke optimised processor support (only for STM32)
     24 //#define STM32
     25 
     26 // Defining the STM32 board allows the library to optimise the performance
     27 // for UNO compatible "MCUfriend" style shields
     28 //#define NUCLEO_64_TFT
     29 //#define NUCLEO_144_TFT
     30 
     31 // STM32 8 bit parallel only:
     32 // If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7
     33 // then this will improve rendering performance by a factor of ~8x
     34 //#define STM_PORTA_DATA_BUS
     35 //#define STM_PORTB_DATA_BUS
     36 
     37 // Tell the library to use parallel mode (otherwise SPI is assumed)
     38 //#define TFT_PARALLEL_8_BIT
     39 //#defined TFT_PARALLEL_16_BIT // **** 16 bit parallel ONLY for RP2040 processor ****
     40 
     41 // Display type -  only define if RPi display
     42 //#define RPI_DISPLAY_TYPE // 20MHz maximum SPI
     43 
     44 // Only define one driver, the other ones must be commented out
     45 #define ILI9341_DRIVER       // Generic driver for common displays
     46 //#define ILI9341_2_DRIVER     // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172
     47 //#define ST7735_DRIVER      // Define additional parameters below for this display
     48 //#define ILI9163_DRIVER     // Define additional parameters below for this display
     49 //#define S6D02A1_DRIVER
     50 //#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
     51 //#define HX8357D_DRIVER
     52 //#define ILI9481_DRIVER
     53 //#define ILI9486_DRIVER
     54 //#define ILI9488_DRIVER     // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)
     55 //#define ST7789_DRIVER      // Full configuration option, define additional parameters below for this display
     56 //#define ST7789_2_DRIVER    // Minimal configuration option, define additional parameters below for this display
     57 //#define R61581_DRIVER
     58 //#define RM68140_DRIVER
     59 //#define ST7796_DRIVER
     60 //#define SSD1351_DRIVER
     61 //#define SSD1963_480_DRIVER
     62 //#define SSD1963_800_DRIVER
     63 //#define SSD1963_800ALT_DRIVER
     64 //#define ILI9225_DRIVER
     65 //#define GC9A01_DRIVER
     66 
     67 // Some displays support SPI reads via the MISO pin, other displays have a single
     68 // bi-directional SDA pin and the library will try to read this via the MOSI line.
     69 // To use the SDA line for reading data from the TFT uncomment the following line:
     70 
     71 // #define TFT_SDA_READ      // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only
     72 
     73 // For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display
     74 // Try ONE option at a time to find the correct colour order for your display
     75 
     76 //  #define TFT_RGB_ORDER TFT_RGB  // Colour order Red-Green-Blue
     77 //  #define TFT_RGB_ORDER TFT_BGR  // Colour order Blue-Green-Red
     78 
     79 // For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below
     80 
     81 // #define M5STACK
     82 
     83 // For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation
     84 // #define TFT_WIDTH  80
     85 // #define TFT_WIDTH  128
     86 // #define TFT_WIDTH  172 // ST7789 172 x 320
     87 // #define TFT_WIDTH  170 // ST7789 170 x 320
     88 // #define TFT_WIDTH  240 // ST7789 240 x 240 and 240 x 320
     89 // #define TFT_HEIGHT 160
     90 // #define TFT_HEIGHT 128
     91 // #define TFT_HEIGHT 240 // ST7789 240 x 240
     92 // #define TFT_HEIGHT 320 // ST7789 240 x 320
     93 // #define TFT_HEIGHT 240 // GC9A01 240 x 240
     94 
     95 // For ST7735 ONLY, define the type of display, originally this was based on the
     96 // colour of the tab on the screen protector film but this is not always true, so try
     97 // out the different options below if the screen does not display graphics correctly,
     98 // e.g. colours wrong, mirror images, or stray pixels at the edges.
     99 // Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
    100 // this User_Setup file, then rebuild and upload the sketch to the board again:
    101 
    102 // #define ST7735_INITB
    103 // #define ST7735_GREENTAB
    104 // #define ST7735_GREENTAB2
    105 // #define ST7735_GREENTAB3
    106 // #define ST7735_GREENTAB128    // For 128 x 128 display
    107 // #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset)
    108 // #define ST7735_ROBOTLCD       // For some RobotLCD arduino shields (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT)
    109 // #define ST7735_REDTAB
    110 // #define ST7735_BLACKTAB
    111 // #define ST7735_REDTAB160x80   // For 160 x 80 display with 24 pixel offset
    112 
    113 // If colours are inverted (white shows as black) then uncomment one of the next
    114 // 2 lines try both options, one of the options should correct the inversion.
    115 
    116 // #define TFT_INVERSION_ON
    117 // #define TFT_INVERSION_OFF
    118 
    119 
    120 // ##################################################################################
    121 //
    122 // Section 2. Define the pins that are used to interface with the display here
    123 //
    124 // ##################################################################################
    125 
    126 // If a backlight control signal is available then define the TFT_BL pin in Section 2
    127 // below. The backlight will be turned ON when tft.begin() is called, but the library
    128 // needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be
    129 // driven with a PWM signal or turned OFF/ON then this must be handled by the user
    130 // sketch. e.g. with digitalWrite(TFT_BL, LOW);
    131 
    132 // #define TFT_BL   32            // LED back-light control pin
    133 // #define TFT_BACKLIGHT_ON HIGH  // Level to turn ON back-light (HIGH or LOW)
    134 
    135 
    136 
    137 // We must use hardware SPI, a minimum of 3 GPIO pins is needed.
    138 // Typical setup for ESP8266 NodeMCU ESP-12 is :
    139 //
    140 // Display SDO/MISO  to NodeMCU pin D6 (or leave disconnected if not reading TFT)
    141 // Display LED       to NodeMCU pin VIN (or 5V, see below)
    142 // Display SCK       to NodeMCU pin D5
    143 // Display SDI/MOSI  to NodeMCU pin D7
    144 // Display DC (RS/AO)to NodeMCU pin D3
    145 // Display RESET     to NodeMCU pin D4 (or RST, see below)
    146 // Display CS        to NodeMCU pin D8 (or GND, see below)
    147 // Display GND       to NodeMCU pin GND (0V)
    148 // Display VCC       to NodeMCU 5V or 3.3V
    149 //
    150 // The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
    151 //
    152 // The DC (Data Command) pin may be labelled AO or RS (Register Select)
    153 //
    154 // With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
    155 // SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
    156 // line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
    157 // to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
    158 //
    159 // The NodeMCU D0 pin can be used for RST
    160 //
    161 //
    162 // Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
    163 // If 5V is not available at a pin you can use 3.3V but backlight brightness
    164 // will be lower.
    165 
    166 
    167 // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######
    168 
    169 // For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
    170 #define TFT_MISO  PIN_D6  // Automatically assigned with ESP8266 if not defined
    171 #define TFT_MOSI  PIN_D7  // Automatically assigned with ESP8266 if not defined
    172 #define TFT_SCLK  PIN_D5  // Automatically assigned with ESP8266 if not defined
    173 
    174 #define TFT_CS    PIN_D8  // Chip select control pin D8
    175 #define TFT_DC    PIN_D3  // Data Command control pin
    176 #define TFT_RST   PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
    177 //#define TFT_RST  -1     // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
    178 
    179 
    180 //#define TFT_BL PIN_D1  // LED back-light (only for ST7789 with backlight control pin)
    181 
    182 //#define TOUCH_CS PIN_D2     // Chip select pin (T_CS) of touch screen
    183 
    184 //#define TFT_WR PIN_D2       // Write strobe for modified Raspberry Pi TFT only
    185 
    186 
    187 // ######  FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES  ######
    188 
    189 // Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
    190 // but saves pins for other functions. It is best not to connect MISO as some displays
    191 // do not tristate that line when chip select is high!
    192 // Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller
    193 // cannot be connected as well to the same SPI signals.
    194 // On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode
    195 // On NodeMCU V3  S0 =MISO, S1 =MOSI, S2 =SCLK
    196 // In ESP8266 overlap mode the following must be defined
    197 
    198 //#define TFT_SPI_OVERLAP
    199 
    200 // In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
    201 //#define TFT_CS   PIN_D3
    202 //#define TFT_DC   PIN_D5  // Data Command control pin
    203 //#define TFT_RST  PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
    204 //#define TFT_RST  -1  // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
    205 
    206 
    207 // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP   ######
    208 
    209 // For ESP32 Dev board (only tested with ILI9341 display)
    210 // The hardware SPI can be mapped to any pins
    211 
    212 //#define TFT_MISO 19
    213 //#define TFT_MOSI 23
    214 //#define TFT_SCLK 18
    215 //#define TFT_CS   15  // Chip select control pin
    216 //#define TFT_DC    2  // Data Command control pin
    217 //#define TFT_RST   4  // Reset pin (could connect to RST pin)
    218 //#define TFT_RST  -1  // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST
    219 
    220 // For ESP32 Dev board (only tested with GC9A01 display)
    221 // The hardware SPI can be mapped to any pins
    222 
    223 //#define TFT_MOSI 15 // In some display driver board, it might be written as "SDA" and so on.
    224 //#define TFT_SCLK 14
    225 //#define TFT_CS   5  // Chip select control pin
    226 //#define TFT_DC   27  // Data Command control pin
    227 //#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)
    228 //#define TFT_BL   22  // LED back-light
    229 
    230 //#define TOUCH_CS 21     // Chip select pin (T_CS) of touch screen
    231 
    232 //#define TFT_WR 22    // Write strobe for modified Raspberry Pi TFT only
    233 
    234 // For the M5Stack module use these #define lines
    235 //#define TFT_MISO 19
    236 //#define TFT_MOSI 23
    237 //#define TFT_SCLK 18
    238 //#define TFT_CS   14  // Chip select control pin
    239 //#define TFT_DC   27  // Data Command control pin
    240 //#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)
    241 //#define TFT_BL   32  // LED back-light (required for M5Stack)
    242 
    243 // ######       EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP        ######
    244 
    245 // The library supports 8 bit parallel TFTs with the ESP32, the pin
    246 // selection below is compatible with ESP32 boards in UNO format.
    247 // Wemos D32 boards need to be modified, see diagram in Tools folder.
    248 // Only ILI9481 and ILI9341 based displays have been tested!
    249 
    250 // Parallel bus is only supported for the STM32 and ESP32
    251 // Example below is for ESP32 Parallel interface with UNO displays
    252 
    253 // Tell the library to use 8 bit parallel mode (otherwise SPI is assumed)
    254 //#define TFT_PARALLEL_8_BIT
    255 
    256 // The ESP32 and TFT the pins used for testing are:
    257 //#define TFT_CS   33  // Chip select control pin (library pulls permanently low
    258 //#define TFT_DC   15  // Data Command control pin - must use a pin in the range 0-31
    259 //#define TFT_RST  32  // Reset pin, toggles on startup
    260 
    261 //#define TFT_WR    4  // Write strobe control pin - must use a pin in the range 0-31
    262 //#define TFT_RD    2  // Read strobe control pin
    263 
    264 //#define TFT_D0   12  // Must use pins in the range 0-31 for the data bus
    265 //#define TFT_D1   13  // so a single register write sets/clears all bits.
    266 //#define TFT_D2   26  // Pins can be randomly assigned, this does not affect
    267 //#define TFT_D3   25  // TFT screen update performance.
    268 //#define TFT_D4   17
    269 //#define TFT_D5   16
    270 //#define TFT_D6   27
    271 //#define TFT_D7   14
    272 
    273 // ######       EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP        ######
    274 
    275 // The TFT can be connected to SPI port 1 or 2
    276 //#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz
    277 //#define TFT_MOSI PA7
    278 //#define TFT_MISO PA6
    279 //#define TFT_SCLK PA5
    280 
    281 //#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz
    282 //#define TFT_MOSI PB15
    283 //#define TFT_MISO PB14
    284 //#define TFT_SCLK PB13
    285 
    286 // Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select
    287 //#define TFT_CS   D5 // Chip select control pin to TFT CS
    288 //#define TFT_DC   D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select)
    289 //#define TFT_RST  D7 // Reset pin to TFT RST (or RESET)
    290 // OR alternatively, we can use STM32 port reference names PXnn
    291 //#define TFT_CS   PE11 // Nucleo-F767ZI equivalent of D5
    292 //#define TFT_DC   PE9  // Nucleo-F767ZI equivalent of D6
    293 //#define TFT_RST  PF13 // Nucleo-F767ZI equivalent of D7
    294 
    295 //#define TFT_RST  -1   // Set TFT_RST to -1 if the display RESET is connected to processor reset
    296                         // Use an Arduino pin for initial testing as connecting to processor reset
    297                         // may not work (pulse too short at power up?)
    298 
    299 // ##################################################################################
    300 //
    301 // Section 3. Define the fonts that are to be used here
    302 //
    303 // ##################################################################################
    304 
    305 // Comment out the #defines below with // to stop that font being loaded
    306 // The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
    307 // normally necessary. If all fonts are loaded the extra FLASH space required is
    308 // about 17Kbytes. To save FLASH space only enable the fonts you need!
    309 
    310 #define LOAD_GLCD   // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
    311 #define LOAD_FONT2  // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
    312 #define LOAD_FONT4  // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
    313 #define LOAD_FONT6  // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
    314 #define LOAD_FONT7  // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-.
    315 #define LOAD_FONT8  // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
    316 //#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
    317 #define LOAD_GFXFF  // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts
    318 
    319 // Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
    320 // this will save ~20kbytes of FLASH
    321 #define SMOOTH_FONT
    322 
    323 
    324 // ##################################################################################
    325 //
    326 // Section 4. Other options
    327 //
    328 // ##################################################################################
    329 
    330 // For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface.
    331 //#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface
    332 
    333 // For RP2040 processor and 8 or 16 bit parallel displays:
    334 // The parallel interface write cycle period is derived from a division of the CPU clock
    335 // speed so scales with the processor clock. This means that the divider ratio may need
    336 // to be increased when overclocking. It may also need to be adjusted dependant on the
    337 // display controller type (ILI94341, HX8357C etc). If RP2040_PIO_CLK_DIV is not defined
    338 // the library will set default values which may not suit your display.
    339 // The display controller data sheet will specify the minimum write cycle period. The
    340 // controllers often work reliably for shorter periods, however if the period is too short
    341 // the display may not initialise or graphics will become corrupted.
    342 // PIO write cycle frequency = (CPU clock/(4 * RP2040_PIO_CLK_DIV))
    343 //#define RP2040_PIO_CLK_DIV 1 // 32ns write cycle at 125MHz CPU clock
    344 //#define RP2040_PIO_CLK_DIV 2 // 64ns write cycle at 125MHz CPU clock
    345 //#define RP2040_PIO_CLK_DIV 3 // 96ns write cycle at 125MHz CPU clock
    346 
    347 // For the RP2040 processor define the SPI port channel used (default 0 if undefined)
    348 //#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used
    349 
    350 // For the STM32 processor define the SPI port channel used (default 1 if undefined)
    351 //#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2
    352 
    353 // Define the SPI clock frequency, this affects the graphics rendering speed. Too
    354 // fast and the TFT driver will not keep up and display corruption appears.
    355 // With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
    356 // With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
    357 // With an ILI9163 display 27 MHz works OK.
    358 
    359 // #define SPI_FREQUENCY   1000000
    360 // #define SPI_FREQUENCY   5000000
    361 // #define SPI_FREQUENCY  10000000
    362 // #define SPI_FREQUENCY  20000000
    363 #define SPI_FREQUENCY  27000000
    364 // #define SPI_FREQUENCY  40000000
    365 // #define SPI_FREQUENCY  55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz)
    366 // #define SPI_FREQUENCY  80000000
    367 
    368 // Optional reduced SPI frequency for reading TFT
    369 #define SPI_READ_FREQUENCY  20000000
    370 
    371 // The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
    372 #define SPI_TOUCH_FREQUENCY  2500000
    373 
    374 // The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default.
    375 // If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam)
    376 // then uncomment the following line:
    377 //#define USE_HSPI_PORT
    378 
    379 // Comment out the following #define if "SPI Transactions" do not need to be
    380 // supported. When commented out the code size will be smaller and sketches will
    381 // run slightly faster, so leave it commented out unless you need it!
    382 
    383 // Transaction support is needed to work with SD library but not needed with TFT_SdFat
    384 // Transaction support is required if other SPI devices are connected.
    385 
    386 // Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
    387 // so changing it here has no effect
    388 
    389 // #define SUPPORT_TRANSACTIONS