acidportal- 😈 Worlds smallest Evil Portal on a LilyGo T-QT |
git clone git://git.acid.vegas/acidportal.git |
Log | Files | Refs | Archive | README | LICENSE |
User_Setup.h (18619B)
1 // USER DEFINED SETTINGS 2 // Set driver type, fonts to be loaded, pins used and SPI control method etc 3 // 4 // See the User_Setup_Select.h file if you wish to be able to define multiple 5 // setups and then easily select which setup file is used by the compiler. 6 // 7 // If this file is edited correctly then all the library example sketches should 8 // run without the need to make any more changes for a particular hardware setup! 9 // Note that some sketches are designed for a particular TFT pixel width/height 10 11 // User defined information reported by "Read_User_Setup" test & diagnostics example 12 #define USER_SETUP_INFO "User_Setup" 13 14 // Define to disable all #warnings in library (can be put in User_Setup_Select.h) 15 //#define DISABLE_ALL_LIBRARY_WARNINGS 16 17 // ################################################################################## 18 // 19 // Section 1. Call up the right driver file and any options for it 20 // 21 // ################################################################################## 22 23 // Define STM32 to invoke optimised processor support (only for STM32) 24 //#define STM32 25 26 // Defining the STM32 board allows the library to optimise the performance 27 // for UNO compatible "MCUfriend" style shields 28 //#define NUCLEO_64_TFT 29 //#define NUCLEO_144_TFT 30 31 // STM32 8 bit parallel only: 32 // If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7 33 // then this will improve rendering performance by a factor of ~8x 34 //#define STM_PORTA_DATA_BUS 35 //#define STM_PORTB_DATA_BUS 36 37 // Tell the library to use parallel mode (otherwise SPI is assumed) 38 //#define TFT_PARALLEL_8_BIT 39 //#defined TFT_PARALLEL_16_BIT // **** 16 bit parallel ONLY for RP2040 processor **** 40 41 // Display type - only define if RPi display 42 //#define RPI_DISPLAY_TYPE // 20MHz maximum SPI 43 44 // Only define one driver, the other ones must be commented out 45 #define ILI9341_DRIVER // Generic driver for common displays 46 //#define ILI9341_2_DRIVER // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172 47 //#define ST7735_DRIVER // Define additional parameters below for this display 48 //#define ILI9163_DRIVER // Define additional parameters below for this display 49 //#define S6D02A1_DRIVER 50 //#define RPI_ILI9486_DRIVER // 20MHz maximum SPI 51 //#define HX8357D_DRIVER 52 //#define ILI9481_DRIVER 53 //#define ILI9486_DRIVER 54 //#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high) 55 //#define ST7789_DRIVER // Full configuration option, define additional parameters below for this display 56 //#define ST7789_2_DRIVER // Minimal configuration option, define additional parameters below for this display 57 //#define R61581_DRIVER 58 //#define RM68140_DRIVER 59 //#define ST7796_DRIVER 60 //#define SSD1351_DRIVER 61 //#define SSD1963_480_DRIVER 62 //#define SSD1963_800_DRIVER 63 //#define SSD1963_800ALT_DRIVER 64 //#define ILI9225_DRIVER 65 //#define GC9A01_DRIVER 66 67 // Some displays support SPI reads via the MISO pin, other displays have a single 68 // bi-directional SDA pin and the library will try to read this via the MOSI line. 69 // To use the SDA line for reading data from the TFT uncomment the following line: 70 71 // #define TFT_SDA_READ // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only 72 73 // For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display 74 // Try ONE option at a time to find the correct colour order for your display 75 76 // #define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue 77 // #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red 78 79 // For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below 80 81 // #define M5STACK 82 83 // For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation 84 // #define TFT_WIDTH 80 85 // #define TFT_WIDTH 128 86 // #define TFT_WIDTH 172 // ST7789 172 x 320 87 // #define TFT_WIDTH 170 // ST7789 170 x 320 88 // #define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320 89 // #define TFT_HEIGHT 160 90 // #define TFT_HEIGHT 128 91 // #define TFT_HEIGHT 240 // ST7789 240 x 240 92 // #define TFT_HEIGHT 320 // ST7789 240 x 320 93 // #define TFT_HEIGHT 240 // GC9A01 240 x 240 94 95 // For ST7735 ONLY, define the type of display, originally this was based on the 96 // colour of the tab on the screen protector film but this is not always true, so try 97 // out the different options below if the screen does not display graphics correctly, 98 // e.g. colours wrong, mirror images, or stray pixels at the edges. 99 // Comment out ALL BUT ONE of these options for a ST7735 display driver, save this 100 // this User_Setup file, then rebuild and upload the sketch to the board again: 101 102 // #define ST7735_INITB 103 // #define ST7735_GREENTAB 104 // #define ST7735_GREENTAB2 105 // #define ST7735_GREENTAB3 106 // #define ST7735_GREENTAB128 // For 128 x 128 display 107 // #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset) 108 // #define ST7735_ROBOTLCD // For some RobotLCD arduino shields (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT) 109 // #define ST7735_REDTAB 110 // #define ST7735_BLACKTAB 111 // #define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset 112 113 // If colours are inverted (white shows as black) then uncomment one of the next 114 // 2 lines try both options, one of the options should correct the inversion. 115 116 // #define TFT_INVERSION_ON 117 // #define TFT_INVERSION_OFF 118 119 120 // ################################################################################## 121 // 122 // Section 2. Define the pins that are used to interface with the display here 123 // 124 // ################################################################################## 125 126 // If a backlight control signal is available then define the TFT_BL pin in Section 2 127 // below. The backlight will be turned ON when tft.begin() is called, but the library 128 // needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be 129 // driven with a PWM signal or turned OFF/ON then this must be handled by the user 130 // sketch. e.g. with digitalWrite(TFT_BL, LOW); 131 132 // #define TFT_BL 32 // LED back-light control pin 133 // #define TFT_BACKLIGHT_ON HIGH // Level to turn ON back-light (HIGH or LOW) 134 135 136 137 // We must use hardware SPI, a minimum of 3 GPIO pins is needed. 138 // Typical setup for ESP8266 NodeMCU ESP-12 is : 139 // 140 // Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT) 141 // Display LED to NodeMCU pin VIN (or 5V, see below) 142 // Display SCK to NodeMCU pin D5 143 // Display SDI/MOSI to NodeMCU pin D7 144 // Display DC (RS/AO)to NodeMCU pin D3 145 // Display RESET to NodeMCU pin D4 (or RST, see below) 146 // Display CS to NodeMCU pin D8 (or GND, see below) 147 // Display GND to NodeMCU pin GND (0V) 148 // Display VCC to NodeMCU 5V or 3.3V 149 // 150 // The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin 151 // 152 // The DC (Data Command) pin may be labelled AO or RS (Register Select) 153 // 154 // With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more 155 // SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS 156 // line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin 157 // to be toggled during setup, so in these cases the TFT_CS line must be defined and connected. 158 // 159 // The NodeMCU D0 pin can be used for RST 160 // 161 // 162 // Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin 163 // If 5V is not available at a pin you can use 3.3V but backlight brightness 164 // will be lower. 165 166 167 // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ###### 168 169 // For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation 170 #define TFT_MISO PIN_D6 // Automatically assigned with ESP8266 if not defined 171 #define TFT_MOSI PIN_D7 // Automatically assigned with ESP8266 if not defined 172 #define TFT_SCLK PIN_D5 // Automatically assigned with ESP8266 if not defined 173 174 #define TFT_CS PIN_D8 // Chip select control pin D8 175 #define TFT_DC PIN_D3 // Data Command control pin 176 #define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) 177 //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V 178 179 180 //#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight control pin) 181 182 //#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen 183 184 //#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only 185 186 187 // ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ###### 188 189 // Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact 190 // but saves pins for other functions. It is best not to connect MISO as some displays 191 // do not tristate that line when chip select is high! 192 // Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller 193 // cannot be connected as well to the same SPI signals. 194 // On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode 195 // On NodeMCU V3 S0 =MISO, S1 =MOSI, S2 =SCLK 196 // In ESP8266 overlap mode the following must be defined 197 198 //#define TFT_SPI_OVERLAP 199 200 // In ESP8266 overlap mode the TFT chip select MUST connect to pin D3 201 //#define TFT_CS PIN_D3 202 //#define TFT_DC PIN_D5 // Data Command control pin 203 //#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) 204 //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V 205 206 207 // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ###### 208 209 // For ESP32 Dev board (only tested with ILI9341 display) 210 // The hardware SPI can be mapped to any pins 211 212 //#define TFT_MISO 19 213 //#define TFT_MOSI 23 214 //#define TFT_SCLK 18 215 //#define TFT_CS 15 // Chip select control pin 216 //#define TFT_DC 2 // Data Command control pin 217 //#define TFT_RST 4 // Reset pin (could connect to RST pin) 218 //#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST 219 220 // For ESP32 Dev board (only tested with GC9A01 display) 221 // The hardware SPI can be mapped to any pins 222 223 //#define TFT_MOSI 15 // In some display driver board, it might be written as "SDA" and so on. 224 //#define TFT_SCLK 14 225 //#define TFT_CS 5 // Chip select control pin 226 //#define TFT_DC 27 // Data Command control pin 227 //#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) 228 //#define TFT_BL 22 // LED back-light 229 230 //#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen 231 232 //#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only 233 234 // For the M5Stack module use these #define lines 235 //#define TFT_MISO 19 236 //#define TFT_MOSI 23 237 //#define TFT_SCLK 18 238 //#define TFT_CS 14 // Chip select control pin 239 //#define TFT_DC 27 // Data Command control pin 240 //#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) 241 //#define TFT_BL 32 // LED back-light (required for M5Stack) 242 243 // ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ###### 244 245 // The library supports 8 bit parallel TFTs with the ESP32, the pin 246 // selection below is compatible with ESP32 boards in UNO format. 247 // Wemos D32 boards need to be modified, see diagram in Tools folder. 248 // Only ILI9481 and ILI9341 based displays have been tested! 249 250 // Parallel bus is only supported for the STM32 and ESP32 251 // Example below is for ESP32 Parallel interface with UNO displays 252 253 // Tell the library to use 8 bit parallel mode (otherwise SPI is assumed) 254 //#define TFT_PARALLEL_8_BIT 255 256 // The ESP32 and TFT the pins used for testing are: 257 //#define TFT_CS 33 // Chip select control pin (library pulls permanently low 258 //#define TFT_DC 15 // Data Command control pin - must use a pin in the range 0-31 259 //#define TFT_RST 32 // Reset pin, toggles on startup 260 261 //#define TFT_WR 4 // Write strobe control pin - must use a pin in the range 0-31 262 //#define TFT_RD 2 // Read strobe control pin 263 264 //#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus 265 //#define TFT_D1 13 // so a single register write sets/clears all bits. 266 //#define TFT_D2 26 // Pins can be randomly assigned, this does not affect 267 //#define TFT_D3 25 // TFT screen update performance. 268 //#define TFT_D4 17 269 //#define TFT_D5 16 270 //#define TFT_D6 27 271 //#define TFT_D7 14 272 273 // ###### EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP ###### 274 275 // The TFT can be connected to SPI port 1 or 2 276 //#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz 277 //#define TFT_MOSI PA7 278 //#define TFT_MISO PA6 279 //#define TFT_SCLK PA5 280 281 //#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz 282 //#define TFT_MOSI PB15 283 //#define TFT_MISO PB14 284 //#define TFT_SCLK PB13 285 286 // Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select 287 //#define TFT_CS D5 // Chip select control pin to TFT CS 288 //#define TFT_DC D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select) 289 //#define TFT_RST D7 // Reset pin to TFT RST (or RESET) 290 // OR alternatively, we can use STM32 port reference names PXnn 291 //#define TFT_CS PE11 // Nucleo-F767ZI equivalent of D5 292 //#define TFT_DC PE9 // Nucleo-F767ZI equivalent of D6 293 //#define TFT_RST PF13 // Nucleo-F767ZI equivalent of D7 294 295 //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to processor reset 296 // Use an Arduino pin for initial testing as connecting to processor reset 297 // may not work (pulse too short at power up?) 298 299 // ################################################################################## 300 // 301 // Section 3. Define the fonts that are to be used here 302 // 303 // ################################################################################## 304 305 // Comment out the #defines below with // to stop that font being loaded 306 // The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not 307 // normally necessary. If all fonts are loaded the extra FLASH space required is 308 // about 17Kbytes. To save FLASH space only enable the fonts you need! 309 310 #define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH 311 #define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters 312 #define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters 313 #define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm 314 #define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-. 315 #define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-. 316 //#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT 317 #define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts 318 319 // Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded 320 // this will save ~20kbytes of FLASH 321 #define SMOOTH_FONT 322 323 324 // ################################################################################## 325 // 326 // Section 4. Other options 327 // 328 // ################################################################################## 329 330 // For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface. 331 //#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface 332 333 // For RP2040 processor and 8 or 16 bit parallel displays: 334 // The parallel interface write cycle period is derived from a division of the CPU clock 335 // speed so scales with the processor clock. This means that the divider ratio may need 336 // to be increased when overclocking. It may also need to be adjusted dependant on the 337 // display controller type (ILI94341, HX8357C etc). If RP2040_PIO_CLK_DIV is not defined 338 // the library will set default values which may not suit your display. 339 // The display controller data sheet will specify the minimum write cycle period. The 340 // controllers often work reliably for shorter periods, however if the period is too short 341 // the display may not initialise or graphics will become corrupted. 342 // PIO write cycle frequency = (CPU clock/(4 * RP2040_PIO_CLK_DIV)) 343 //#define RP2040_PIO_CLK_DIV 1 // 32ns write cycle at 125MHz CPU clock 344 //#define RP2040_PIO_CLK_DIV 2 // 64ns write cycle at 125MHz CPU clock 345 //#define RP2040_PIO_CLK_DIV 3 // 96ns write cycle at 125MHz CPU clock 346 347 // For the RP2040 processor define the SPI port channel used (default 0 if undefined) 348 //#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used 349 350 // For the STM32 processor define the SPI port channel used (default 1 if undefined) 351 //#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2 352 353 // Define the SPI clock frequency, this affects the graphics rendering speed. Too 354 // fast and the TFT driver will not keep up and display corruption appears. 355 // With an ILI9341 display 40MHz works OK, 80MHz sometimes fails 356 // With a ST7735 display more than 27MHz may not work (spurious pixels and lines) 357 // With an ILI9163 display 27 MHz works OK. 358 359 // #define SPI_FREQUENCY 1000000 360 // #define SPI_FREQUENCY 5000000 361 // #define SPI_FREQUENCY 10000000 362 // #define SPI_FREQUENCY 20000000 363 #define SPI_FREQUENCY 27000000 364 // #define SPI_FREQUENCY 40000000 365 // #define SPI_FREQUENCY 55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz) 366 // #define SPI_FREQUENCY 80000000 367 368 // Optional reduced SPI frequency for reading TFT 369 #define SPI_READ_FREQUENCY 20000000 370 371 // The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: 372 #define SPI_TOUCH_FREQUENCY 2500000 373 374 // The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default. 375 // If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam) 376 // then uncomment the following line: 377 //#define USE_HSPI_PORT 378 379 // Comment out the following #define if "SPI Transactions" do not need to be 380 // supported. When commented out the code size will be smaller and sketches will 381 // run slightly faster, so leave it commented out unless you need it! 382 383 // Transaction support is needed to work with SD library but not needed with TFT_SdFat 384 // Transaction support is required if other SPI devices are connected. 385 386 // Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex) 387 // so changing it here has no effect 388 389 // #define SUPPORT_TRANSACTIONS