acid-drop

- Hacking the planet from a LilyGo T-Deck using custom firmware
git clone git://git.acid.vegas/acid-drop.git
Log | Files | Refs | Archive | README | LICENSE

lv_tlsf.c (37687B)

      1 #include "../lv_conf_internal.h"
      2 #if LV_MEM_CUSTOM == 0
      3 
      4 #include <limits.h>
      5 #include "lv_tlsf.h"
      6 #include "lv_mem.h"
      7 #include "lv_log.h"
      8 #include "lv_assert.h"
      9 
     10 #undef  printf
     11 #define printf LV_LOG_ERROR
     12 
     13 #define TLSF_MAX_POOL_SIZE LV_MEM_SIZE
     14 
     15 #if !defined(_DEBUG)
     16     #define _DEBUG 0
     17 #endif
     18 
     19 #if defined(__cplusplus)
     20     #define tlsf_decl inline
     21 #else
     22     #define tlsf_decl static
     23 #endif
     24 
     25 /*
     26 ** Architecture-specific bit manipulation routines.
     27 **
     28 ** TLSF achieves O(1) cost for malloc and free operations by limiting
     29 ** the search for a free block to a free list of guaranteed size
     30 ** adequate to fulfill the request, combined with efficient free list
     31 ** queries using bitmasks and architecture-specific bit-manipulation
     32 ** routines.
     33 **
     34 ** Most modern processors provide instructions to count leading zeroes
     35 ** in a word, find the lowest and highest set bit, etc. These
     36 ** specific implementations will be used when available, falling back
     37 ** to a reasonably efficient generic implementation.
     38 **
     39 ** NOTE: TLSF spec relies on ffs/fls returning value 0..31.
     40 ** ffs/fls return 1-32 by default, returning 0 for error.
     41 */
     42 
     43 /*
     44 ** Detect whether or not we are building for a 32- or 64-bit (LP/LLP)
     45 ** architecture. There is no reliable portable method at compile-time.
     46 */
     47 #if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__) \
     48     || defined (_WIN64) || defined (__LP64__) || defined (__LLP64__)
     49     #define TLSF_64BIT
     50 #endif
     51 
     52 /*
     53 ** Returns one plus the index of the most significant 1-bit of n,
     54 ** or if n is zero, returns zero.
     55 */
     56 #ifdef TLSF_64BIT
     57     #define TLSF_FLS(n) ((n) & 0xffffffff00000000ull ? 32 + TLSF_FLS32((size_t)(n) >> 32) : TLSF_FLS32(n))
     58 #else
     59     #define TLSF_FLS(n) TLSF_FLS32(n)
     60 #endif
     61 
     62 #define TLSF_FLS32(n) ((n) & 0xffff0000 ? 16 + TLSF_FLS16((n) >> 16) : TLSF_FLS16(n))
     63 #define TLSF_FLS16(n) ((n) & 0xff00     ?  8 + TLSF_FLS8 ((n) >>  8) : TLSF_FLS8 (n))
     64 #define TLSF_FLS8(n)  ((n) & 0xf0       ?  4 + TLSF_FLS4 ((n) >>  4) : TLSF_FLS4 (n))
     65 #define TLSF_FLS4(n)  ((n) & 0xc        ?  2 + TLSF_FLS2 ((n) >>  2) : TLSF_FLS2 (n))
     66 #define TLSF_FLS2(n)  ((n) & 0x2        ?  1 + TLSF_FLS1 ((n) >>  1) : TLSF_FLS1 (n))
     67 #define TLSF_FLS1(n)  ((n) & 0x1        ?  1 : 0)
     68 
     69 /*
     70 ** Returns round up value of log2(n).
     71 ** Note: it is used at compile time.
     72 */
     73 #define TLSF_LOG2_CEIL(n) ((n) & (n - 1) ? TLSF_FLS(n) : TLSF_FLS(n) - 1)
     74 
     75 /*
     76 ** gcc 3.4 and above have builtin support, specialized for architecture.
     77 ** Some compilers masquerade as gcc; patchlevel test filters them out.
     78 */
     79 #if defined (__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) \
     80     && defined (__GNUC_PATCHLEVEL__)
     81 
     82 #if defined (__SNC__)
     83 /* SNC for Playstation 3. */
     84 
     85 tlsf_decl int tlsf_ffs(unsigned int word)
     86 {
     87     const unsigned int reverse = word & (~word + 1);
     88     const int bit = 32 - __builtin_clz(reverse);
     89     return bit - 1;
     90 }
     91 
     92 #else
     93 
     94 tlsf_decl int tlsf_ffs(unsigned int word)
     95 {
     96     return __builtin_ffs(word) - 1;
     97 }
     98 
     99 #endif
    100 
    101 tlsf_decl int tlsf_fls(unsigned int word)
    102 {
    103     const int bit = word ? 32 - __builtin_clz(word) : 0;
    104     return bit - 1;
    105 }
    106 
    107 #elif defined (_MSC_VER) && (_MSC_VER >= 1400) && (defined (_M_IX86) || defined (_M_X64))
    108 /* Microsoft Visual C++ support on x86/X64 architectures. */
    109 
    110 #include <intrin.h>
    111 
    112 #pragma intrinsic(_BitScanReverse)
    113 #pragma intrinsic(_BitScanForward)
    114 
    115 tlsf_decl int tlsf_fls(unsigned int word)
    116 {
    117     unsigned long index;
    118     return _BitScanReverse(&index, word) ? index : -1;
    119 }
    120 
    121 tlsf_decl int tlsf_ffs(unsigned int word)
    122 {
    123     unsigned long index;
    124     return _BitScanForward(&index, word) ? index : -1;
    125 }
    126 
    127 #elif defined (_MSC_VER) && defined (_M_PPC)
    128 /* Microsoft Visual C++ support on PowerPC architectures. */
    129 
    130 #include <ppcintrinsics.h>
    131 
    132 tlsf_decl int tlsf_fls(unsigned int word)
    133 {
    134     const int bit = 32 - _CountLeadingZeros(word);
    135     return bit - 1;
    136 }
    137 
    138 tlsf_decl int tlsf_ffs(unsigned int word)
    139 {
    140     const unsigned int reverse = word & (~word + 1);
    141     const int bit = 32 - _CountLeadingZeros(reverse);
    142     return bit - 1;
    143 }
    144 
    145 #elif defined (__ARMCC_VERSION)
    146 /* RealView Compilation Tools for ARM */
    147 
    148 tlsf_decl int tlsf_ffs(unsigned int word)
    149 {
    150     const unsigned int reverse = word & (~word + 1);
    151     const int bit = 32 - __clz(reverse);
    152     return bit - 1;
    153 }
    154 
    155 tlsf_decl int tlsf_fls(unsigned int word)
    156 {
    157     const int bit = word ? 32 - __clz(word) : 0;
    158     return bit - 1;
    159 }
    160 
    161 #elif defined (__ghs__)
    162 /* Green Hills support for PowerPC */
    163 
    164 #include <ppc_ghs.h>
    165 
    166 tlsf_decl int tlsf_ffs(unsigned int word)
    167 {
    168     const unsigned int reverse = word & (~word + 1);
    169     const int bit = 32 - __CLZ32(reverse);
    170     return bit - 1;
    171 }
    172 
    173 tlsf_decl int tlsf_fls(unsigned int word)
    174 {
    175     const int bit = word ? 32 - __CLZ32(word) : 0;
    176     return bit - 1;
    177 }
    178 
    179 #else
    180 /* Fall back to generic implementation. */
    181 
    182 /* Implement ffs in terms of fls. */
    183 tlsf_decl int tlsf_ffs(unsigned int word)
    184 {
    185     const unsigned int reverse = word & (~word + 1);
    186     return TLSF_FLS32(reverse) - 1;
    187 }
    188 
    189 tlsf_decl int tlsf_fls(unsigned int word)
    190 {
    191     return TLSF_FLS32(word) - 1;
    192 }
    193 
    194 #endif
    195 
    196 /* Possibly 64-bit version of tlsf_fls. */
    197 #if defined (TLSF_64BIT)
    198 tlsf_decl int tlsf_fls_sizet(size_t size)
    199 {
    200     int high = (int)(size >> 32);
    201     int bits = 0;
    202     if(high) {
    203         bits = 32 + tlsf_fls(high);
    204     }
    205     else {
    206         bits = tlsf_fls((int)size & 0xffffffff);
    207 
    208     }
    209     return bits;
    210 }
    211 #else
    212 #define tlsf_fls_sizet tlsf_fls
    213 #endif
    214 
    215 #undef tlsf_decl
    216 
    217 /*
    218 ** Constants.
    219 */
    220 
    221 /* Public constants: may be modified. */
    222 enum tlsf_public {
    223     /* log2 of number of linear subdivisions of block sizes. Larger
    224     ** values require more memory in the control structure. Values of
    225     ** 4 or 5 are typical.
    226     */
    227     SL_INDEX_COUNT_LOG2 = 5,
    228 };
    229 
    230 /* Private constants: do not modify. */
    231 enum tlsf_private {
    232 #if defined (TLSF_64BIT)
    233     /* All allocation sizes and addresses are aligned to 8 bytes. */
    234     ALIGN_SIZE_LOG2 = 3,
    235 #else
    236     /* All allocation sizes and addresses are aligned to 4 bytes. */
    237     ALIGN_SIZE_LOG2 = 2,
    238 #endif
    239     ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2),
    240 
    241     /*
    242     ** We support allocations of sizes up to (1 << FL_INDEX_MAX) bits.
    243     ** However, because we linearly subdivide the second-level lists, and
    244     ** our minimum size granularity is 4 bytes, it doesn't make sense to
    245     ** create first-level lists for sizes smaller than SL_INDEX_COUNT * 4,
    246     ** or (1 << (SL_INDEX_COUNT_LOG2 + 2)) bytes, as there we will be
    247     ** trying to split size ranges into more slots than we have available.
    248     ** Instead, we calculate the minimum threshold size, and place all
    249     ** blocks below that size into the 0th first-level list.
    250     */
    251 
    252 #if defined (TLSF_MAX_POOL_SIZE)
    253     FL_INDEX_MAX = TLSF_LOG2_CEIL(TLSF_MAX_POOL_SIZE),
    254 #elif defined (TLSF_64BIT)
    255     /*
    256     ** TODO: We can increase this to support larger sizes, at the expense
    257     ** of more overhead in the TLSF structure.
    258     */
    259     FL_INDEX_MAX = 32,
    260 #else
    261     FL_INDEX_MAX = 30,
    262 #endif
    263     SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2),
    264     FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2),
    265     FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1),
    266 
    267     SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT),
    268 };
    269 
    270 /*
    271 ** Cast and min/max macros.
    272 */
    273 
    274 #define tlsf_cast(t, exp)   ((t) (exp))
    275 #define tlsf_min(a, b)      ((a) < (b) ? (a) : (b))
    276 #define tlsf_max(a, b)      ((a) > (b) ? (a) : (b))
    277 
    278 /*
    279 ** Set assert macro, if it has not been provided by the user.
    280 */
    281 #define tlsf_assert LV_ASSERT
    282 
    283 #if !defined (tlsf_assert)
    284     #define tlsf_assert assert
    285 #endif
    286 
    287 /*
    288 ** Static assertion mechanism.
    289 */
    290 
    291 #define _tlsf_glue2(x, y) x ## y
    292 #define _tlsf_glue(x, y) _tlsf_glue2(x, y)
    293 #define tlsf_static_assert(exp) \
    294     typedef char _tlsf_glue(static_assert, __LINE__) [(exp) ? 1 : -1]
    295 
    296 /* This code has been tested on 32- and 64-bit (LP/LLP) architectures. */
    297 tlsf_static_assert(sizeof(int) * CHAR_BIT == 32);
    298 tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32);
    299 tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64);
    300 
    301 /* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
    302 tlsf_static_assert(sizeof(unsigned int) * CHAR_BIT >= SL_INDEX_COUNT);
    303 
    304 /* Ensure we've properly tuned our sizes. */
    305 tlsf_static_assert(ALIGN_SIZE == SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
    306 
    307 /*
    308 ** Data structures and associated constants.
    309 */
    310 
    311 /*
    312 ** Block header structure.
    313 **
    314 ** There are several implementation subtleties involved:
    315 ** - The prev_phys_block field is only valid if the previous block is free.
    316 ** - The prev_phys_block field is actually stored at the end of the
    317 **   previous block. It appears at the beginning of this structure only to
    318 **   simplify the implementation.
    319 ** - The next_free / prev_free fields are only valid if the block is free.
    320 */
    321 typedef struct block_header_t {
    322     /* Points to the previous physical block. */
    323     struct block_header_t * prev_phys_block;
    324 
    325     /* The size of this block, excluding the block header. */
    326     size_t size;
    327 
    328     /* Next and previous free blocks. */
    329     struct block_header_t * next_free;
    330     struct block_header_t * prev_free;
    331 } block_header_t;
    332 
    333 /*
    334 ** Since block sizes are always at least a multiple of 4, the two least
    335 ** significant bits of the size field are used to store the block status:
    336 ** - bit 0: whether block is busy or free
    337 ** - bit 1: whether previous block is busy or free
    338 */
    339 static const size_t block_header_free_bit = 1 << 0;
    340 static const size_t block_header_prev_free_bit = 1 << 1;
    341 
    342 /*
    343 ** The size of the block header exposed to used blocks is the size field.
    344 ** The prev_phys_block field is stored *inside* the previous free block.
    345 */
    346 static const size_t block_header_overhead = sizeof(size_t);
    347 
    348 /* User data starts directly after the size field in a used block. */
    349 static const size_t block_start_offset =
    350     offsetof(block_header_t, size) + sizeof(size_t);
    351 
    352 /*
    353 ** A free block must be large enough to store its header minus the size of
    354 ** the prev_phys_block field, and no larger than the number of addressable
    355 ** bits for FL_INDEX.
    356 */
    357 static const size_t block_size_min =
    358     sizeof(block_header_t) - sizeof(block_header_t *);
    359 static const size_t block_size_max = tlsf_cast(size_t, 1) << FL_INDEX_MAX;
    360 
    361 
    362 /* The TLSF control structure. */
    363 typedef struct control_t {
    364     /* Empty lists point at this block to indicate they are free. */
    365     block_header_t block_null;
    366 
    367     /* Bitmaps for free lists. */
    368     unsigned int fl_bitmap;
    369     unsigned int sl_bitmap[FL_INDEX_COUNT];
    370 
    371     /* Head of free lists. */
    372     block_header_t * blocks[FL_INDEX_COUNT][SL_INDEX_COUNT];
    373 } control_t;
    374 
    375 /* A type used for casting when doing pointer arithmetic. */
    376 typedef ptrdiff_t tlsfptr_t;
    377 
    378 /*
    379 ** block_header_t member functions.
    380 */
    381 
    382 static size_t block_size(const block_header_t * block)
    383 {
    384     return block->size & ~(block_header_free_bit | block_header_prev_free_bit);
    385 }
    386 
    387 static void block_set_size(block_header_t * block, size_t size)
    388 {
    389     const size_t oldsize = block->size;
    390     block->size = size | (oldsize & (block_header_free_bit | block_header_prev_free_bit));
    391 }
    392 
    393 static int block_is_last(const block_header_t * block)
    394 {
    395     return block_size(block) == 0;
    396 }
    397 
    398 static int block_is_free(const block_header_t * block)
    399 {
    400     return tlsf_cast(int, block->size & block_header_free_bit);
    401 }
    402 
    403 static void block_set_free(block_header_t * block)
    404 {
    405     block->size |= block_header_free_bit;
    406 }
    407 
    408 static void block_set_used(block_header_t * block)
    409 {
    410     block->size &= ~block_header_free_bit;
    411 }
    412 
    413 static int block_is_prev_free(const block_header_t * block)
    414 {
    415     return tlsf_cast(int, block->size & block_header_prev_free_bit);
    416 }
    417 
    418 static void block_set_prev_free(block_header_t * block)
    419 {
    420     block->size |= block_header_prev_free_bit;
    421 }
    422 
    423 static void block_set_prev_used(block_header_t * block)
    424 {
    425     block->size &= ~block_header_prev_free_bit;
    426 }
    427 
    428 static block_header_t * block_from_ptr(const void * ptr)
    429 {
    430     return tlsf_cast(block_header_t *,
    431                      tlsf_cast(unsigned char *, ptr) - block_start_offset);
    432 }
    433 
    434 static void * block_to_ptr(const block_header_t * block)
    435 {
    436     return tlsf_cast(void *,
    437                      tlsf_cast(unsigned char *, block) + block_start_offset);
    438 }
    439 
    440 /* Return location of next block after block of given size. */
    441 static block_header_t * offset_to_block(const void * ptr, size_t size)
    442 {
    443     return tlsf_cast(block_header_t *, tlsf_cast(tlsfptr_t, ptr) + size);
    444 }
    445 
    446 /* Return location of previous block. */
    447 static block_header_t * block_prev(const block_header_t * block)
    448 {
    449     tlsf_assert(block_is_prev_free(block) && "previous block must be free");
    450     return block->prev_phys_block;
    451 }
    452 
    453 /* Return location of next existing block. */
    454 static block_header_t * block_next(const block_header_t * block)
    455 {
    456     block_header_t * next = offset_to_block(block_to_ptr(block),
    457                                             block_size(block) - block_header_overhead);
    458     tlsf_assert(!block_is_last(block));
    459     return next;
    460 }
    461 
    462 /* Link a new block with its physical neighbor, return the neighbor. */
    463 static block_header_t * block_link_next(block_header_t * block)
    464 {
    465     block_header_t * next = block_next(block);
    466     next->prev_phys_block = block;
    467     return next;
    468 }
    469 
    470 static void block_mark_as_free(block_header_t * block)
    471 {
    472     /* Link the block to the next block, first. */
    473     block_header_t * next = block_link_next(block);
    474     block_set_prev_free(next);
    475     block_set_free(block);
    476 }
    477 
    478 static void block_mark_as_used(block_header_t * block)
    479 {
    480     block_header_t * next = block_next(block);
    481     block_set_prev_used(next);
    482     block_set_used(block);
    483 }
    484 
    485 static size_t align_up(size_t x, size_t align)
    486 {
    487     tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
    488     return (x + (align - 1)) & ~(align - 1);
    489 }
    490 
    491 static size_t align_down(size_t x, size_t align)
    492 {
    493     tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
    494     return x - (x & (align - 1));
    495 }
    496 
    497 static void * align_ptr(const void * ptr, size_t align)
    498 {
    499     const tlsfptr_t aligned =
    500         (tlsf_cast(tlsfptr_t, ptr) + (align - 1)) & ~(align - 1);
    501     tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
    502     return tlsf_cast(void *, aligned);
    503 }
    504 
    505 /*
    506 ** Adjust an allocation size to be aligned to word size, and no smaller
    507 ** than internal minimum.
    508 */
    509 static size_t adjust_request_size(size_t size, size_t align)
    510 {
    511     size_t adjust = 0;
    512     if(size) {
    513         const size_t aligned = align_up(size, align);
    514 
    515         /* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */
    516         if(aligned < block_size_max) {
    517             adjust = tlsf_max(aligned, block_size_min);
    518         }
    519     }
    520     return adjust;
    521 }
    522 
    523 /*
    524 ** TLSF utility functions. In most cases, these are direct translations of
    525 ** the documentation found in the white paper.
    526 */
    527 
    528 static void mapping_insert(size_t size, int * fli, int * sli)
    529 {
    530     int fl, sl;
    531     if(size < SMALL_BLOCK_SIZE) {
    532         /* Store small blocks in first list. */
    533         fl = 0;
    534         sl = tlsf_cast(int, size) / (SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
    535     }
    536     else {
    537         fl = tlsf_fls_sizet(size);
    538         sl = tlsf_cast(int, size >> (fl - SL_INDEX_COUNT_LOG2)) ^ (1 << SL_INDEX_COUNT_LOG2);
    539         fl -= (FL_INDEX_SHIFT - 1);
    540     }
    541     *fli = fl;
    542     *sli = sl;
    543 }
    544 
    545 /* This version rounds up to the next block size (for allocations) */
    546 static void mapping_search(size_t size, int * fli, int * sli)
    547 {
    548     if(size >= SMALL_BLOCK_SIZE) {
    549         const size_t round = (1 << (tlsf_fls_sizet(size) - SL_INDEX_COUNT_LOG2)) - 1;
    550         size += round;
    551     }
    552     mapping_insert(size, fli, sli);
    553 }
    554 
    555 static block_header_t * search_suitable_block(control_t * control, int * fli, int * sli)
    556 {
    557     int fl = *fli;
    558     int sl = *sli;
    559 
    560     /*
    561     ** First, search for a block in the list associated with the given
    562     ** fl/sl index.
    563     */
    564     unsigned int sl_map = control->sl_bitmap[fl] & (~0U << sl);
    565     if(!sl_map) {
    566         /* No block exists. Search in the next largest first-level list. */
    567         const unsigned int fl_map = control->fl_bitmap & (~0U << (fl + 1));
    568         if(!fl_map) {
    569             /* No free blocks available, memory has been exhausted. */
    570             return 0;
    571         }
    572 
    573         fl = tlsf_ffs(fl_map);
    574         *fli = fl;
    575         sl_map = control->sl_bitmap[fl];
    576     }
    577     tlsf_assert(sl_map && "internal error - second level bitmap is null");
    578     sl = tlsf_ffs(sl_map);
    579     *sli = sl;
    580 
    581     /* Return the first block in the free list. */
    582     return control->blocks[fl][sl];
    583 }
    584 
    585 /* Remove a free block from the free list.*/
    586 static void remove_free_block(control_t * control, block_header_t * block, int fl, int sl)
    587 {
    588     block_header_t * prev = block->prev_free;
    589     block_header_t * next = block->next_free;
    590     tlsf_assert(prev && "prev_free field can not be null");
    591     tlsf_assert(next && "next_free field can not be null");
    592     next->prev_free = prev;
    593     prev->next_free = next;
    594 
    595     /* If this block is the head of the free list, set new head. */
    596     if(control->blocks[fl][sl] == block) {
    597         control->blocks[fl][sl] = next;
    598 
    599         /* If the new head is null, clear the bitmap. */
    600         if(next == &control->block_null) {
    601             control->sl_bitmap[fl] &= ~(1U << sl);
    602 
    603             /* If the second bitmap is now empty, clear the fl bitmap. */
    604             if(!control->sl_bitmap[fl]) {
    605                 control->fl_bitmap &= ~(1U << fl);
    606             }
    607         }
    608     }
    609 }
    610 
    611 /* Insert a free block into the free block list. */
    612 static void insert_free_block(control_t * control, block_header_t * block, int fl, int sl)
    613 {
    614     block_header_t * current = control->blocks[fl][sl];
    615     tlsf_assert(current && "free list cannot have a null entry");
    616     tlsf_assert(block && "cannot insert a null entry into the free list");
    617     block->next_free = current;
    618     block->prev_free = &control->block_null;
    619     current->prev_free = block;
    620 
    621     tlsf_assert(block_to_ptr(block) == align_ptr(block_to_ptr(block), ALIGN_SIZE)
    622                 && "block not aligned properly");
    623     /*
    624     ** Insert the new block at the head of the list, and mark the first-
    625     ** and second-level bitmaps appropriately.
    626     */
    627     control->blocks[fl][sl] = block;
    628     control->fl_bitmap |= (1U << fl);
    629     control->sl_bitmap[fl] |= (1U << sl);
    630 }
    631 
    632 /* Remove a given block from the free list. */
    633 static void block_remove(control_t * control, block_header_t * block)
    634 {
    635     int fl, sl;
    636     mapping_insert(block_size(block), &fl, &sl);
    637     remove_free_block(control, block, fl, sl);
    638 }
    639 
    640 /* Insert a given block into the free list. */
    641 static void block_insert(control_t * control, block_header_t * block)
    642 {
    643     int fl, sl;
    644     mapping_insert(block_size(block), &fl, &sl);
    645     insert_free_block(control, block, fl, sl);
    646 }
    647 
    648 static int block_can_split(block_header_t * block, size_t size)
    649 {
    650     return block_size(block) >= sizeof(block_header_t) + size;
    651 }
    652 
    653 /* Split a block into two, the second of which is free. */
    654 static block_header_t * block_split(block_header_t * block, size_t size)
    655 {
    656     /* Calculate the amount of space left in the remaining block. */
    657     block_header_t * remaining =
    658         offset_to_block(block_to_ptr(block), size - block_header_overhead);
    659 
    660     const size_t remain_size = block_size(block) - (size + block_header_overhead);
    661 
    662     tlsf_assert(block_to_ptr(remaining) == align_ptr(block_to_ptr(remaining), ALIGN_SIZE)
    663                 && "remaining block not aligned properly");
    664 
    665     tlsf_assert(block_size(block) == remain_size + size + block_header_overhead);
    666     block_set_size(remaining, remain_size);
    667     tlsf_assert(block_size(remaining) >= block_size_min && "block split with invalid size");
    668 
    669     block_set_size(block, size);
    670     block_mark_as_free(remaining);
    671 
    672     return remaining;
    673 }
    674 
    675 /* Absorb a free block's storage into an adjacent previous free block. */
    676 static block_header_t * block_absorb(block_header_t * prev, block_header_t * block)
    677 {
    678     tlsf_assert(!block_is_last(prev) && "previous block can't be last");
    679     /* Note: Leaves flags untouched. */
    680     prev->size += block_size(block) + block_header_overhead;
    681     block_link_next(prev);
    682     return prev;
    683 }
    684 
    685 /* Merge a just-freed block with an adjacent previous free block. */
    686 static block_header_t * block_merge_prev(control_t * control, block_header_t * block)
    687 {
    688     if(block_is_prev_free(block)) {
    689         block_header_t * prev = block_prev(block);
    690         tlsf_assert(prev && "prev physical block can't be null");
    691         tlsf_assert(block_is_free(prev) && "prev block is not free though marked as such");
    692         block_remove(control, prev);
    693         block = block_absorb(prev, block);
    694     }
    695 
    696     return block;
    697 }
    698 
    699 /* Merge a just-freed block with an adjacent free block. */
    700 static block_header_t * block_merge_next(control_t * control, block_header_t * block)
    701 {
    702     block_header_t * next = block_next(block);
    703     tlsf_assert(next && "next physical block can't be null");
    704 
    705     if(block_is_free(next)) {
    706         tlsf_assert(!block_is_last(block) && "previous block can't be last");
    707         block_remove(control, next);
    708         block = block_absorb(block, next);
    709     }
    710 
    711     return block;
    712 }
    713 
    714 /* Trim any trailing block space off the end of a block, return to pool. */
    715 static void block_trim_free(control_t * control, block_header_t * block, size_t size)
    716 {
    717     tlsf_assert(block_is_free(block) && "block must be free");
    718     if(block_can_split(block, size)) {
    719         block_header_t * remaining_block = block_split(block, size);
    720         block_link_next(block);
    721         block_set_prev_free(remaining_block);
    722         block_insert(control, remaining_block);
    723     }
    724 }
    725 
    726 /* Trim any trailing block space off the end of a used block, return to pool. */
    727 static void block_trim_used(control_t * control, block_header_t * block, size_t size)
    728 {
    729     tlsf_assert(!block_is_free(block) && "block must be used");
    730     if(block_can_split(block, size)) {
    731         /* If the next block is free, we must coalesce. */
    732         block_header_t * remaining_block = block_split(block, size);
    733         block_set_prev_used(remaining_block);
    734 
    735         remaining_block = block_merge_next(control, remaining_block);
    736         block_insert(control, remaining_block);
    737     }
    738 }
    739 
    740 static block_header_t * block_trim_free_leading(control_t * control, block_header_t * block, size_t size)
    741 {
    742     block_header_t * remaining_block = block;
    743     if(block_can_split(block, size)) {
    744         /* We want the 2nd block. */
    745         remaining_block = block_split(block, size - block_header_overhead);
    746         block_set_prev_free(remaining_block);
    747 
    748         block_link_next(block);
    749         block_insert(control, block);
    750     }
    751 
    752     return remaining_block;
    753 }
    754 
    755 static block_header_t * block_locate_free(control_t * control, size_t size)
    756 {
    757     int fl = 0, sl = 0;
    758     block_header_t * block = 0;
    759 
    760     if(size) {
    761         mapping_search(size, &fl, &sl);
    762 
    763         /*
    764         ** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up
    765         ** with indices that are off the end of the block array.
    766         ** So, we protect against that here, since this is the only callsite of mapping_search.
    767         ** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range.
    768         */
    769         if(fl < FL_INDEX_COUNT) {
    770             block = search_suitable_block(control, &fl, &sl);
    771         }
    772     }
    773 
    774     if(block) {
    775         tlsf_assert(block_size(block) >= size);
    776         remove_free_block(control, block, fl, sl);
    777     }
    778 
    779     return block;
    780 }
    781 
    782 static void * block_prepare_used(control_t * control, block_header_t * block, size_t size)
    783 {
    784     void * p = 0;
    785     if(block) {
    786         tlsf_assert(size && "size must be non-zero");
    787         block_trim_free(control, block, size);
    788         block_mark_as_used(block);
    789         p = block_to_ptr(block);
    790     }
    791     return p;
    792 }
    793 
    794 /* Clear structure and point all empty lists at the null block. */
    795 static void control_constructor(control_t * control)
    796 {
    797     int i, j;
    798 
    799     control->block_null.next_free = &control->block_null;
    800     control->block_null.prev_free = &control->block_null;
    801 
    802     control->fl_bitmap = 0;
    803     for(i = 0; i < FL_INDEX_COUNT; ++i) {
    804         control->sl_bitmap[i] = 0;
    805         for(j = 0; j < SL_INDEX_COUNT; ++j) {
    806             control->blocks[i][j] = &control->block_null;
    807         }
    808     }
    809 }
    810 
    811 /*
    812 ** Debugging utilities.
    813 */
    814 
    815 typedef struct integrity_t {
    816     int prev_status;
    817     int status;
    818 } integrity_t;
    819 
    820 #define tlsf_insist(x) { tlsf_assert(x); if (!(x)) { status--; } }
    821 
    822 static void integrity_walker(void * ptr, size_t size, int used, void * user)
    823 {
    824     block_header_t * block = block_from_ptr(ptr);
    825     integrity_t * integ = tlsf_cast(integrity_t *, user);
    826     const int this_prev_status = block_is_prev_free(block) ? 1 : 0;
    827     const int this_status = block_is_free(block) ? 1 : 0;
    828     const size_t this_block_size = block_size(block);
    829 
    830     int status = 0;
    831     LV_UNUSED(used);
    832     tlsf_insist(integ->prev_status == this_prev_status && "prev status incorrect");
    833     tlsf_insist(size == this_block_size && "block size incorrect");
    834 
    835     integ->prev_status = this_status;
    836     integ->status += status;
    837 }
    838 
    839 int lv_tlsf_check(lv_tlsf_t tlsf)
    840 {
    841     int i, j;
    842 
    843     control_t * control = tlsf_cast(control_t *, tlsf);
    844     int status = 0;
    845 
    846     /* Check that the free lists and bitmaps are accurate. */
    847     for(i = 0; i < FL_INDEX_COUNT; ++i) {
    848         for(j = 0; j < SL_INDEX_COUNT; ++j) {
    849             const int fl_map = control->fl_bitmap & (1U << i);
    850             const int sl_list = control->sl_bitmap[i];
    851             const int sl_map = sl_list & (1U << j);
    852             const block_header_t * block = control->blocks[i][j];
    853 
    854             /* Check that first- and second-level lists agree. */
    855             if(!fl_map) {
    856                 tlsf_insist(!sl_map && "second-level map must be null");
    857             }
    858 
    859             if(!sl_map) {
    860                 tlsf_insist(block == &control->block_null && "block list must be null");
    861                 continue;
    862             }
    863 
    864             /* Check that there is at least one free block. */
    865             tlsf_insist(sl_list && "no free blocks in second-level map");
    866             tlsf_insist(block != &control->block_null && "block should not be null");
    867 
    868             while(block != &control->block_null) {
    869                 int fli, sli;
    870                 tlsf_insist(block_is_free(block) && "block should be free");
    871                 tlsf_insist(!block_is_prev_free(block) && "blocks should have coalesced");
    872                 tlsf_insist(!block_is_free(block_next(block)) && "blocks should have coalesced");
    873                 tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free");
    874                 tlsf_insist(block_size(block) >= block_size_min && "block not minimum size");
    875 
    876                 mapping_insert(block_size(block), &fli, &sli);
    877                 tlsf_insist(fli == i && sli == j && "block size indexed in wrong list");
    878                 block = block->next_free;
    879             }
    880         }
    881     }
    882 
    883     return status;
    884 }
    885 
    886 #undef tlsf_insist
    887 
    888 static void default_walker(void * ptr, size_t size, int used, void * user)
    889 {
    890     LV_UNUSED(user);
    891     printf("\t%p %s size: %x (%p)\n", ptr, used ? "used" : "free", (unsigned int)size, (void *)block_from_ptr(ptr));
    892 }
    893 
    894 void lv_tlsf_walk_pool(lv_pool_t pool, lv_tlsf_walker walker, void * user)
    895 {
    896     lv_tlsf_walker pool_walker = walker ? walker : default_walker;
    897     block_header_t * block =
    898         offset_to_block(pool, -(int)block_header_overhead);
    899 
    900     while(block && !block_is_last(block)) {
    901         pool_walker(
    902             block_to_ptr(block),
    903             block_size(block),
    904             !block_is_free(block),
    905             user);
    906         block = block_next(block);
    907     }
    908 }
    909 
    910 size_t lv_tlsf_block_size(void * ptr)
    911 {
    912     size_t size = 0;
    913     if(ptr) {
    914         const block_header_t * block = block_from_ptr(ptr);
    915         size = block_size(block);
    916     }
    917     return size;
    918 }
    919 
    920 int lv_tlsf_check_pool(lv_pool_t pool)
    921 {
    922     /* Check that the blocks are physically correct. */
    923     integrity_t integ = { 0, 0 };
    924     lv_tlsf_walk_pool(pool, integrity_walker, &integ);
    925 
    926     return integ.status;
    927 }
    928 
    929 /*
    930 ** Size of the TLSF structures in a given memory block passed to
    931 ** lv_tlsf_create, equal to the size of a control_t
    932 */
    933 size_t lv_tlsf_size(void)
    934 {
    935     return sizeof(control_t);
    936 }
    937 
    938 size_t lv_tlsf_align_size(void)
    939 {
    940     return ALIGN_SIZE;
    941 }
    942 
    943 size_t lv_tlsf_block_size_min(void)
    944 {
    945     return block_size_min;
    946 }
    947 
    948 size_t lv_tlsf_block_size_max(void)
    949 {
    950     return block_size_max;
    951 }
    952 
    953 /*
    954 ** Overhead of the TLSF structures in a given memory block passed to
    955 ** lv_tlsf_add_pool, equal to the overhead of a free block and the
    956 ** sentinel block.
    957 */
    958 size_t lv_tlsf_pool_overhead(void)
    959 {
    960     return 2 * block_header_overhead;
    961 }
    962 
    963 size_t lv_tlsf_alloc_overhead(void)
    964 {
    965     return block_header_overhead;
    966 }
    967 
    968 lv_pool_t lv_tlsf_add_pool(lv_tlsf_t tlsf, void * mem, size_t bytes)
    969 {
    970     block_header_t * block;
    971     block_header_t * next;
    972 
    973     const size_t pool_overhead = lv_tlsf_pool_overhead();
    974     const size_t pool_bytes = align_down(bytes - pool_overhead, ALIGN_SIZE);
    975 
    976     if(((ptrdiff_t)mem % ALIGN_SIZE) != 0) {
    977         printf("lv_tlsf_add_pool: Memory must be aligned by %u bytes.\n",
    978                (unsigned int)ALIGN_SIZE);
    979         return 0;
    980     }
    981 
    982     if(pool_bytes < block_size_min || pool_bytes > block_size_max) {
    983 #if defined (TLSF_64BIT)
    984         printf("lv_tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n",
    985                (unsigned int)(pool_overhead + block_size_min),
    986                (unsigned int)((pool_overhead + block_size_max) / 256));
    987 #else
    988         printf("lv_tlsf_add_pool: Memory size must be between %u and %u bytes.\n",
    989                (unsigned int)(pool_overhead + block_size_min),
    990                (unsigned int)(pool_overhead + block_size_max));
    991 #endif
    992         return 0;
    993     }
    994 
    995     /*
    996     ** Create the main free block. Offset the start of the block slightly
    997     ** so that the prev_phys_block field falls outside of the pool -
    998     ** it will never be used.
    999     */
   1000     block = offset_to_block(mem, -(tlsfptr_t)block_header_overhead);
   1001     block_set_size(block, pool_bytes);
   1002     block_set_free(block);
   1003     block_set_prev_used(block);
   1004     block_insert(tlsf_cast(control_t *, tlsf), block);
   1005 
   1006     /* Split the block to create a zero-size sentinel block. */
   1007     next = block_link_next(block);
   1008     block_set_size(next, 0);
   1009     block_set_used(next);
   1010     block_set_prev_free(next);
   1011 
   1012     return mem;
   1013 }
   1014 
   1015 void lv_tlsf_remove_pool(lv_tlsf_t tlsf, lv_pool_t pool)
   1016 {
   1017     control_t * control = tlsf_cast(control_t *, tlsf);
   1018     block_header_t * block = offset_to_block(pool, -(int)block_header_overhead);
   1019 
   1020     int fl = 0, sl = 0;
   1021 
   1022     tlsf_assert(block_is_free(block) && "block should be free");
   1023     tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free");
   1024     tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero");
   1025 
   1026     mapping_insert(block_size(block), &fl, &sl);
   1027     remove_free_block(control, block, fl, sl);
   1028 }
   1029 
   1030 /*
   1031 ** TLSF main interface.
   1032 */
   1033 
   1034 #if _DEBUG
   1035 int test_ffs_fls()
   1036 {
   1037     /* Verify ffs/fls work properly. */
   1038     int rv = 0;
   1039     rv += (tlsf_ffs(0) == -1) ? 0 : 0x1;
   1040     rv += (tlsf_fls(0) == -1) ? 0 : 0x2;
   1041     rv += (tlsf_ffs(1) == 0) ? 0 : 0x4;
   1042     rv += (tlsf_fls(1) == 0) ? 0 : 0x8;
   1043     rv += (tlsf_ffs(0x80000000) == 31) ? 0 : 0x10;
   1044     rv += (tlsf_ffs(0x80008000) == 15) ? 0 : 0x20;
   1045     rv += (tlsf_fls(0x80000008) == 31) ? 0 : 0x40;
   1046     rv += (tlsf_fls(0x7FFFFFFF) == 30) ? 0 : 0x80;
   1047 
   1048 #if defined (TLSF_64BIT)
   1049     rv += (tlsf_fls_sizet(0x80000000) == 31) ? 0 : 0x100;
   1050     rv += (tlsf_fls_sizet(0x100000000) == 32) ? 0 : 0x200;
   1051     rv += (tlsf_fls_sizet(0xffffffffffffffff) == 63) ? 0 : 0x400;
   1052 #endif
   1053 
   1054     if(rv) {
   1055         printf("test_ffs_fls: %x ffs/fls tests failed.\n", rv);
   1056     }
   1057     return rv;
   1058 }
   1059 #endif
   1060 
   1061 lv_tlsf_t lv_tlsf_create(void * mem)
   1062 {
   1063 #if _DEBUG
   1064     if(test_ffs_fls()) {
   1065         return 0;
   1066     }
   1067 #endif
   1068 
   1069     if(((tlsfptr_t)mem % ALIGN_SIZE) != 0) {
   1070         printf("lv_tlsf_create: Memory must be aligned to %u bytes.\n",
   1071                (unsigned int)ALIGN_SIZE);
   1072         return 0;
   1073     }
   1074 
   1075     control_constructor(tlsf_cast(control_t *, mem));
   1076 
   1077     return tlsf_cast(lv_tlsf_t, mem);
   1078 }
   1079 
   1080 lv_tlsf_t lv_tlsf_create_with_pool(void * mem, size_t bytes)
   1081 {
   1082     lv_tlsf_t tlsf = lv_tlsf_create(mem);
   1083     lv_tlsf_add_pool(tlsf, (char *)mem + lv_tlsf_size(), bytes - lv_tlsf_size());
   1084     return tlsf;
   1085 }
   1086 
   1087 void lv_tlsf_destroy(lv_tlsf_t tlsf)
   1088 {
   1089     /* Nothing to do. */
   1090     LV_UNUSED(tlsf);
   1091 }
   1092 
   1093 lv_pool_t lv_tlsf_get_pool(lv_tlsf_t tlsf)
   1094 {
   1095     return tlsf_cast(lv_pool_t, (char *)tlsf + lv_tlsf_size());
   1096 }
   1097 
   1098 void * lv_tlsf_malloc(lv_tlsf_t tlsf, size_t size)
   1099 {
   1100     control_t * control = tlsf_cast(control_t *, tlsf);
   1101     const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
   1102     block_header_t * block = block_locate_free(control, adjust);
   1103     return block_prepare_used(control, block, adjust);
   1104 }
   1105 
   1106 void * lv_tlsf_memalign(lv_tlsf_t tlsf, size_t align, size_t size)
   1107 {
   1108     control_t * control = tlsf_cast(control_t *, tlsf);
   1109     const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
   1110 
   1111     /*
   1112     ** We must allocate an additional minimum block size bytes so that if
   1113     ** our free block will leave an alignment gap which is smaller, we can
   1114     ** trim a leading free block and release it back to the pool. We must
   1115     ** do this because the previous physical block is in use, therefore
   1116     ** the prev_phys_block field is not valid, and we can't simply adjust
   1117     ** the size of that block.
   1118     */
   1119     const size_t gap_minimum = sizeof(block_header_t);
   1120     const size_t size_with_gap = adjust_request_size(adjust + align + gap_minimum, align);
   1121 
   1122     /*
   1123     ** If alignment is less than or equals base alignment, we're done.
   1124     ** If we requested 0 bytes, return null, as lv_tlsf_malloc(0) does.
   1125     */
   1126     const size_t aligned_size = (adjust && align > ALIGN_SIZE) ? size_with_gap : adjust;
   1127 
   1128     block_header_t * block = block_locate_free(control, aligned_size);
   1129 
   1130     /* This can't be a static assert. */
   1131     tlsf_assert(sizeof(block_header_t) == block_size_min + block_header_overhead);
   1132 
   1133     if(block) {
   1134         void * ptr = block_to_ptr(block);
   1135         void * aligned = align_ptr(ptr, align);
   1136         size_t gap = tlsf_cast(size_t,
   1137                                tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
   1138 
   1139         /* If gap size is too small, offset to next aligned boundary. */
   1140         if(gap && gap < gap_minimum) {
   1141             const size_t gap_remain = gap_minimum - gap;
   1142             const size_t offset = tlsf_max(gap_remain, align);
   1143             const void * next_aligned = tlsf_cast(void *,
   1144                                                   tlsf_cast(tlsfptr_t, aligned) + offset);
   1145 
   1146             aligned = align_ptr(next_aligned, align);
   1147             gap = tlsf_cast(size_t,
   1148                             tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
   1149         }
   1150 
   1151         if(gap) {
   1152             tlsf_assert(gap >= gap_minimum && "gap size too small");
   1153             block = block_trim_free_leading(control, block, gap);
   1154         }
   1155     }
   1156 
   1157     return block_prepare_used(control, block, adjust);
   1158 }
   1159 
   1160 void lv_tlsf_free(lv_tlsf_t tlsf, const void * ptr)
   1161 {
   1162     /* Don't attempt to free a NULL pointer. */
   1163     if(ptr) {
   1164         control_t * control = tlsf_cast(control_t *, tlsf);
   1165         block_header_t * block = block_from_ptr(ptr);
   1166         tlsf_assert(!block_is_free(block) && "block already marked as free");
   1167         block_mark_as_free(block);
   1168         block = block_merge_prev(control, block);
   1169         block = block_merge_next(control, block);
   1170         block_insert(control, block);
   1171     }
   1172 }
   1173 
   1174 /*
   1175 ** The TLSF block information provides us with enough information to
   1176 ** provide a reasonably intelligent implementation of realloc, growing or
   1177 ** shrinking the currently allocated block as required.
   1178 **
   1179 ** This routine handles the somewhat esoteric edge cases of realloc:
   1180 ** - a non-zero size with a null pointer will behave like malloc
   1181 ** - a zero size with a non-null pointer will behave like free
   1182 ** - a request that cannot be satisfied will leave the original buffer
   1183 **   untouched
   1184 ** - an extended buffer size will leave the newly-allocated area with
   1185 **   contents undefined
   1186 */
   1187 void * lv_tlsf_realloc(lv_tlsf_t tlsf, void * ptr, size_t size)
   1188 {
   1189     control_t * control = tlsf_cast(control_t *, tlsf);
   1190     void * p = 0;
   1191 
   1192     /* Zero-size requests are treated as free. */
   1193     if(ptr && size == 0) {
   1194         lv_tlsf_free(tlsf, ptr);
   1195     }
   1196     /* Requests with NULL pointers are treated as malloc. */
   1197     else if(!ptr) {
   1198         p = lv_tlsf_malloc(tlsf, size);
   1199     }
   1200     else {
   1201         block_header_t * block = block_from_ptr(ptr);
   1202         block_header_t * next = block_next(block);
   1203 
   1204         const size_t cursize = block_size(block);
   1205         const size_t combined = cursize + block_size(next) + block_header_overhead;
   1206         const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
   1207 
   1208         tlsf_assert(!block_is_free(block) && "block already marked as free");
   1209 
   1210         /*
   1211         ** If the next block is used, or when combined with the current
   1212         ** block, does not offer enough space, we must reallocate and copy.
   1213         */
   1214         if(adjust > cursize && (!block_is_free(next) || adjust > combined)) {
   1215             p = lv_tlsf_malloc(tlsf, size);
   1216             if(p) {
   1217                 const size_t minsize = tlsf_min(cursize, size);
   1218                 lv_memcpy(p, ptr, minsize);
   1219                 lv_tlsf_free(tlsf, ptr);
   1220             }
   1221         }
   1222         else {
   1223             /* Do we need to expand to the next block? */
   1224             if(adjust > cursize) {
   1225                 block_merge_next(control, block);
   1226                 block_mark_as_used(block);
   1227             }
   1228 
   1229             /* Trim the resulting block and return the original pointer. */
   1230             block_trim_used(control, block, adjust);
   1231             p = ptr;
   1232         }
   1233     }
   1234 
   1235     return p;
   1236 }
   1237 
   1238 #endif /* LV_MEM_CUSTOM == 0 */