acid-drop

- Hacking the planet from a LilyGo T-Deck using custom firmware
git clone git://git.acid.vegas/acid-drop.git
Log | Files | Refs | Archive | README | LICENSE

qrcodegen.c (40821B)

      1 /*
      2  * QR Code generator library (C)
      3  *
      4  * Copyright (c) Project Nayuki. (MIT License)
      5  * https://www.nayuki.io/page/qr-code-generator-library
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
      8  * this software and associated documentation files (the "Software"), to deal in
      9  * the Software without restriction, including without limitation the rights to
     10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
     11  * the Software, and to permit persons to whom the Software is furnished to do so,
     12  * subject to the following conditions:
     13  * - The above copyright notice and this permission notice shall be included in
     14  *   all copies or substantial portions of the Software.
     15  * - The Software is provided "as is", without warranty of any kind, express or
     16  *   implied, including but not limited to the warranties of merchantability,
     17  *   fitness for a particular purpose and noninfringement. In no event shall the
     18  *   authors or copyright holders be liable for any claim, damages or other
     19  *   liability, whether in an action of contract, tort or otherwise, arising from,
     20  *   out of or in connection with the Software or the use or other dealings in the
     21  *   Software.
     22  */
     23 
     24 #include <assert.h>
     25 #include <limits.h>
     26 #include <stdlib.h>
     27 #include <string.h>
     28 #include "qrcodegen.h"
     29 
     30 #ifndef QRCODEGEN_TEST
     31 	#define testable static  // Keep functions private
     32 #else
     33 	#define testable  // Expose private functions
     34 #endif
     35 
     36 
     37 /*---- Forward declarations for private functions ----*/
     38 
     39 // Regarding all public and private functions defined in this source file:
     40 // - They require all pointer/array arguments to be not null unless the array length is zero.
     41 // - They only read input scalar/array arguments, write to output pointer/array
     42 //   arguments, and return scalar values; they are "pure" functions.
     43 // - They don't read mutable global variables or write to any global variables.
     44 // - They don't perform I/O, read the clock, print to console, etc.
     45 // - They allocate a small and constant amount of stack memory.
     46 // - They don't allocate or free any memory on the heap.
     47 // - They don't recurse or mutually recurse. All the code
     48 //   could be inlined into the top-level public functions.
     49 // - They run in at most quadratic time with respect to input arguments.
     50 //   Most functions run in linear time, and some in constant time.
     51 //   There are no unbounded loops or non-obvious termination conditions.
     52 // - They are completely thread-safe if the caller does not give the
     53 //   same writable buffer to concurrent calls to these functions.
     54 
     55 testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen);
     56 
     57 testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]);
     58 testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl);
     59 testable int getNumRawDataModules(int ver);
     60 
     61 testable void calcReedSolomonGenerator(int degree, uint8_t result[]);
     62 testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen,
     63 	const uint8_t generator[], int degree, uint8_t result[]);
     64 testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y);
     65 
     66 testable void initializeFunctionModules(int version, uint8_t qrcode[]);
     67 static void drawWhiteFunctionModules(uint8_t qrcode[], int version);
     68 static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]);
     69 testable int getAlignmentPatternPositions(int version, uint8_t result[7]);
     70 static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]);
     71 
     72 static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]);
     73 static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask);
     74 static long getPenaltyScore(const uint8_t qrcode[]);
     75 static void addRunToHistory(unsigned char run, unsigned char history[7]);
     76 static bool hasFinderLikePattern(const unsigned char runHistory[7]);
     77 
     78 testable bool getModule(const uint8_t qrcode[], int x, int y);
     79 testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack);
     80 testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack);
     81 static bool getBit(int x, int i);
     82 
     83 testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars);
     84 testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version);
     85 static int numCharCountBits(enum qrcodegen_Mode mode, int version);
     86 
     87 
     88 
     89 /*---- Private tables of constants ----*/
     90 
     91 // The set of all legal characters in alphanumeric mode, where each character
     92 // value maps to the index in the string. For checking text and encoding segments.
     93 static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
     94 
     95 // For generating error correction codes.
     96 testable const int8_t ECC_CODEWORDS_PER_BLOCK[4][41] = {
     97 	// Version: (note that index 0 is for padding, and is set to an illegal value)
     98 	//0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
     99 	{-1,  7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30},  // Low
    100 	{-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28},  // Medium
    101 	{-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30},  // Quartile
    102 	{-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30},  // High
    103 };
    104 
    105 #define qrcodegen_REED_SOLOMON_DEGREE_MAX 30  // Based on the table above
    106 
    107 // For generating error correction codes.
    108 testable const int8_t NUM_ERROR_CORRECTION_BLOCKS[4][41] = {
    109 	// Version: (note that index 0 is for padding, and is set to an illegal value)
    110 	//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
    111 	{-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4,  4,  4,  4,  4,  6,  6,  6,  6,  7,  8,  8,  9,  9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25},  // Low
    112 	{-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5,  5,  8,  9,  9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49},  // Medium
    113 	{-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8,  8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68},  // Quartile
    114 	{-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81},  // High
    115 };
    116 
    117 // For automatic mask pattern selection.
    118 static const int PENALTY_N1 =  3;
    119 static const int PENALTY_N2 =  3;
    120 static const int PENALTY_N3 = 40;
    121 static const int PENALTY_N4 = 10;
    122 
    123 
    124 
    125 /*---- High-level QR Code encoding functions ----*/
    126 
    127 // Public function - see documentation comment in header file.
    128 bool qrcodegen_encodeText(const char *text, uint8_t tempBuffer[], uint8_t qrcode[],
    129 		enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) {
    130 	
    131 	size_t textLen = strlen(text);
    132 	if (textLen == 0)
    133 		return qrcodegen_encodeSegmentsAdvanced(NULL, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
    134 	size_t bufLen = qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion);
    135 	
    136 	struct qrcodegen_Segment seg;
    137 	if (qrcodegen_isNumeric(text)) {
    138 		if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen)
    139 			goto fail;
    140 		seg = qrcodegen_makeNumeric(text, tempBuffer);
    141 	} else if (qrcodegen_isAlphanumeric(text)) {
    142 		if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen)
    143 			goto fail;
    144 		seg = qrcodegen_makeAlphanumeric(text, tempBuffer);
    145 	} else {
    146 		if (textLen > bufLen)
    147 			goto fail;
    148 		for (size_t i = 0; i < textLen; i++)
    149 			tempBuffer[i] = (uint8_t)text[i];
    150 		seg.mode = qrcodegen_Mode_BYTE;
    151 		seg.bitLength = calcSegmentBitLength(seg.mode, textLen);
    152 		if (seg.bitLength == -1)
    153 			goto fail;
    154 		seg.numChars = (int)textLen;
    155 		seg.data = tempBuffer;
    156 	}
    157 	return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
    158 	
    159 fail:
    160 	qrcode[0] = 0;  // Set size to invalid value for safety
    161 	return false;
    162 }
    163 
    164 
    165 // Public function - see documentation comment in header file.
    166 bool qrcodegen_encodeBinary(uint8_t dataAndTemp[], size_t dataLen, uint8_t qrcode[],
    167 		enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) {
    168 	
    169 	struct qrcodegen_Segment seg;
    170 	seg.mode = qrcodegen_Mode_BYTE;
    171 	seg.bitLength = calcSegmentBitLength(seg.mode, dataLen);
    172 	if (seg.bitLength == -1) {
    173 		qrcode[0] = 0;  // Set size to invalid value for safety
    174 		return false;
    175 	}
    176 	seg.numChars = (int)dataLen;
    177 	seg.data = dataAndTemp;
    178 	return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode);
    179 }
    180 
    181 
    182 // Appends the given number of low-order bits of the given value to the given byte-based
    183 // bit buffer, increasing the bit length. Requires 0 <= numBits <= 16 and val < 2^numBits.
    184 testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen) {
    185 	assert(0 <= numBits && numBits <= 16 && (unsigned long)val >> numBits == 0);
    186 	for (int i = numBits - 1; i >= 0; i--, (*bitLen)++)
    187 		buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7));
    188 }
    189 
    190 
    191 
    192 /*---- Low-level QR Code encoding functions ----*/
    193 
    194 // Public function - see documentation comment in header file.
    195 bool qrcodegen_encodeSegments(const struct qrcodegen_Segment segs[], size_t len,
    196 		enum qrcodegen_Ecc ecl, uint8_t tempBuffer[], uint8_t qrcode[]) {
    197 	return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl,
    198 		qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, -1, true, tempBuffer, qrcode);
    199 }
    200 
    201 
    202 // Public function - see documentation comment in header file.
    203 bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], size_t len, enum qrcodegen_Ecc ecl,
    204 		int minVersion, int maxVersion, int mask, bool boostEcl, uint8_t tempBuffer[], uint8_t qrcode[]) {
    205 	assert(segs != NULL || len == 0);
    206 	assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX);
    207 	assert(0 <= (int)ecl && (int)ecl <= 3 && -1 <= (int)mask && (int)mask <= 7);
    208 	
    209 	// Find the minimal version number to use
    210 	int version, dataUsedBits;
    211 	for (version = minVersion; ; version++) {
    212 		int dataCapacityBits = getNumDataCodewords(version, ecl) * 8;  // Number of data bits available
    213 		dataUsedBits = getTotalBits(segs, len, version);
    214 		if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits)
    215 			break;  // This version number is found to be suitable
    216 		if (version >= maxVersion) {  // All versions in the range could not fit the given data
    217 			qrcode[0] = 0;  // Set size to invalid value for safety
    218 			return false;
    219 		}
    220 	}
    221 	assert(dataUsedBits != -1);
    222 	
    223 	// Increase the error correction level while the data still fits in the current version number
    224 	for (int i = (int)qrcodegen_Ecc_MEDIUM; i <= (int)qrcodegen_Ecc_HIGH; i++) {  // From low to high
    225 		if (boostEcl && dataUsedBits <= getNumDataCodewords(version, (enum qrcodegen_Ecc)i) * 8)
    226 			ecl = (enum qrcodegen_Ecc)i;
    227 	}
    228 	
    229 	// Concatenate all segments to create the data bit string
    230 	memset(qrcode, 0, qrcodegen_BUFFER_LEN_FOR_VERSION(version) * sizeof(qrcode[0]));
    231 	int bitLen = 0;
    232 	for (size_t i = 0; i < len; i++) {
    233 		const struct qrcodegen_Segment *seg = &segs[i];
    234 		appendBitsToBuffer((int)seg->mode, 4, qrcode, &bitLen);
    235 		appendBitsToBuffer(seg->numChars, numCharCountBits(seg->mode, version), qrcode, &bitLen);
    236 		for (int j = 0; j < seg->bitLength; j++)
    237 			appendBitsToBuffer((seg->data[j >> 3] >> (7 - (j & 7))) & 1, 1, qrcode, &bitLen);
    238 	}
    239 	assert(bitLen == dataUsedBits);
    240 	
    241 	// Add terminator and pad up to a byte if applicable
    242 	int dataCapacityBits = getNumDataCodewords(version, ecl) * 8;
    243 	assert(bitLen <= dataCapacityBits);
    244 	int terminatorBits = dataCapacityBits - bitLen;
    245 	if (terminatorBits > 4)
    246 		terminatorBits = 4;
    247 	appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen);
    248 	appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen);
    249 	assert(bitLen % 8 == 0);
    250 	
    251 	// Pad with alternating bytes until data capacity is reached
    252 	for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11)
    253 		appendBitsToBuffer(padByte, 8, qrcode, &bitLen);
    254 	
    255 	// Draw function and data codeword modules
    256 	addEccAndInterleave(qrcode, version, ecl, tempBuffer);
    257 	initializeFunctionModules(version, qrcode);
    258 	drawCodewords(tempBuffer, getNumRawDataModules(version) / 8, qrcode);
    259 	drawWhiteFunctionModules(qrcode, version);
    260 	initializeFunctionModules(version, tempBuffer);
    261 	
    262 	// Handle masking
    263 	if (mask == qrcodegen_Mask_AUTO) {  // Automatically choose best mask
    264 		long minPenalty = LONG_MAX;
    265 		for (int i = 0; i < 8; i++) {
    266 			enum qrcodegen_Mask msk = (enum qrcodegen_Mask)i;
    267 			applyMask(tempBuffer, qrcode, msk);
    268 			drawFormatBits(ecl, msk, qrcode);
    269 			long penalty = getPenaltyScore(qrcode);
    270 			if (penalty < minPenalty) {
    271 				mask = msk;
    272 				minPenalty = penalty;
    273 			}
    274 			applyMask(tempBuffer, qrcode, msk);  // Undoes the mask due to XOR
    275 		}
    276 	}
    277 	assert(0 <= (int)mask && (int)mask <= 7);
    278 	applyMask(tempBuffer, qrcode, mask);
    279 	drawFormatBits(ecl, mask, qrcode);
    280 	return true;
    281 }
    282 
    283 
    284 
    285 /*---- Error correction code generation functions ----*/
    286 
    287 // Appends error correction bytes to each block of the given data array, then interleaves
    288 // bytes from the blocks and stores them in the result array. data[0 : dataLen] contains
    289 // the input data. data[dataLen : rawCodewords] is used as a temporary work area and will
    290 // be clobbered by this function. The final answer is stored in result[0 : rawCodewords].
    291 testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]) {
    292 	// Calculate parameter numbers
    293 	assert(0 <= (int)ecl && (int)ecl < 4 && qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX);
    294 	int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[(int)ecl][version];
    295 	int blockEccLen = ECC_CODEWORDS_PER_BLOCK  [(int)ecl][version];
    296 	int rawCodewords = getNumRawDataModules(version) / 8;
    297 	int dataLen = getNumDataCodewords(version, ecl);
    298 	int numShortBlocks = numBlocks - rawCodewords % numBlocks;
    299 	int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen;
    300 	
    301 	// Split data into blocks, calculate ECC, and interleave
    302 	// (not concatenate) the bytes into a single sequence
    303 	uint8_t generator[qrcodegen_REED_SOLOMON_DEGREE_MAX];
    304 	calcReedSolomonGenerator(blockEccLen, generator);
    305 	const uint8_t *dat = data;
    306 	for (int i = 0; i < numBlocks; i++) {
    307 		int datLen = shortBlockDataLen + (i < numShortBlocks ? 0 : 1);
    308 		uint8_t *ecc = &data[dataLen];  // Temporary storage
    309 		calcReedSolomonRemainder(dat, datLen, generator, blockEccLen, ecc);
    310 		for (int j = 0, k = i; j < datLen; j++, k += numBlocks) {  // Copy data
    311 			if (j == shortBlockDataLen)
    312 				k -= numShortBlocks;
    313 			result[k] = dat[j];
    314 		}
    315 		for (int j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks)  // Copy ECC
    316 			result[k] = ecc[j];
    317 		dat += datLen;
    318 	}
    319 }
    320 
    321 
    322 // Returns the number of 8-bit codewords that can be used for storing data (not ECC),
    323 // for the given version number and error correction level. The result is in the range [9, 2956].
    324 testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl) {
    325 	int v = version, e = (int)ecl;
    326 	assert(0 <= e && e < 4);
    327 	return getNumRawDataModules(v) / 8
    328 		- ECC_CODEWORDS_PER_BLOCK    [e][v]
    329 		* NUM_ERROR_CORRECTION_BLOCKS[e][v];
    330 }
    331 
    332 
    333 // Returns the number of data bits that can be stored in a QR Code of the given version number, after
    334 // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
    335 // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
    336 testable int getNumRawDataModules(int ver) {
    337 	assert(qrcodegen_VERSION_MIN <= ver && ver <= qrcodegen_VERSION_MAX);
    338 	int result = (16 * ver + 128) * ver + 64;
    339 	if (ver >= 2) {
    340 		int numAlign = ver / 7 + 2;
    341 		result -= (25 * numAlign - 10) * numAlign - 55;
    342 		if (ver >= 7)
    343 			result -= 36;
    344 	}
    345 	return result;
    346 }
    347 
    348 
    349 
    350 /*---- Reed-Solomon ECC generator functions ----*/
    351 
    352 // Calculates the Reed-Solomon generator polynomial of the given degree, storing in result[0 : degree].
    353 testable void calcReedSolomonGenerator(int degree, uint8_t result[]) {
    354 	// Start with the monomial x^0
    355 	assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX);
    356 	memset(result, 0, degree * sizeof(result[0]));
    357 	result[degree - 1] = 1;
    358 	
    359 	// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
    360 	// drop the highest term, and store the rest of the coefficients in order of descending powers.
    361 	// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
    362 	uint8_t root = 1;
    363 	for (int i = 0; i < degree; i++) {
    364 		// Multiply the current product by (x - r^i)
    365 		for (int j = 0; j < degree; j++) {
    366 			result[j] = finiteFieldMultiply(result[j], root);
    367 			if (j + 1 < degree)
    368 				result[j] ^= result[j + 1];
    369 		}
    370 		root = finiteFieldMultiply(root, 0x02);
    371 	}
    372 }
    373 
    374 
    375 // Calculates the remainder of the polynomial data[0 : dataLen] when divided by the generator[0 : degree], where all
    376 // polynomials are in big endian and the generator has an implicit leading 1 term, storing the result in result[0 : degree].
    377 testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen,
    378 		const uint8_t generator[], int degree, uint8_t result[]) {
    379 	
    380 	// Perform polynomial division
    381 	assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX);
    382 	memset(result, 0, degree * sizeof(result[0]));
    383 	for (int i = 0; i < dataLen; i++) {
    384 		uint8_t factor = data[i] ^ result[0];
    385 		memmove(&result[0], &result[1], (degree - 1) * sizeof(result[0]));
    386 		result[degree - 1] = 0;
    387 		for (int j = 0; j < degree; j++)
    388 			result[j] ^= finiteFieldMultiply(generator[j], factor);
    389 	}
    390 }
    391 
    392 #undef qrcodegen_REED_SOLOMON_DEGREE_MAX
    393 
    394 
    395 // Returns the product of the two given field elements modulo GF(2^8/0x11D).
    396 // All inputs are valid. This could be implemented as a 256*256 lookup table.
    397 testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y) {
    398 	// Russian peasant multiplication
    399 	uint8_t z = 0;
    400 	for (int i = 7; i >= 0; i--) {
    401 		z = (z << 1) ^ ((z >> 7) * 0x11D);
    402 		z ^= ((y >> i) & 1) * x;
    403 	}
    404 	return z;
    405 }
    406 
    407 
    408 
    409 /*---- Drawing function modules ----*/
    410 
    411 // Clears the given QR Code grid with white modules for the given
    412 // version's size, then marks every function module as black.
    413 testable void initializeFunctionModules(int version, uint8_t qrcode[]) {
    414 	// Initialize QR Code
    415 	int qrsize = version * 4 + 17;
    416 	memset(qrcode, 0, ((qrsize * qrsize + 7) / 8 + 1) * sizeof(qrcode[0]));
    417 	qrcode[0] = (uint8_t)qrsize;
    418 	
    419 	// Fill horizontal and vertical timing patterns
    420 	fillRectangle(6, 0, 1, qrsize, qrcode);
    421 	fillRectangle(0, 6, qrsize, 1, qrcode);
    422 	
    423 	// Fill 3 finder patterns (all corners except bottom right) and format bits
    424 	fillRectangle(0, 0, 9, 9, qrcode);
    425 	fillRectangle(qrsize - 8, 0, 8, 9, qrcode);
    426 	fillRectangle(0, qrsize - 8, 9, 8, qrcode);
    427 	
    428 	// Fill numerous alignment patterns
    429 	uint8_t alignPatPos[7];
    430 	int numAlign = getAlignmentPatternPositions(version, alignPatPos);
    431 	for (int i = 0; i < numAlign; i++) {
    432 		for (int j = 0; j < numAlign; j++) {
    433 			// Don't draw on the three finder corners
    434 			if (!((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)))
    435 				fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode);
    436 		}
    437 	}
    438 	
    439 	// Fill version blocks
    440 	if (version >= 7) {
    441 		fillRectangle(qrsize - 11, 0, 3, 6, qrcode);
    442 		fillRectangle(0, qrsize - 11, 6, 3, qrcode);
    443 	}
    444 }
    445 
    446 
    447 // Draws white function modules and possibly some black modules onto the given QR Code, without changing
    448 // non-function modules. This does not draw the format bits. This requires all function modules to be previously
    449 // marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules.
    450 static void drawWhiteFunctionModules(uint8_t qrcode[], int version) {
    451 	// Draw horizontal and vertical timing patterns
    452 	int qrsize = qrcodegen_getSize(qrcode);
    453 	for (int i = 7; i < qrsize - 7; i += 2) {
    454 		setModule(qrcode, 6, i, false);
    455 		setModule(qrcode, i, 6, false);
    456 	}
    457 	
    458 	// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
    459 	for (int dy = -4; dy <= 4; dy++) {
    460 		for (int dx = -4; dx <= 4; dx++) {
    461 			int dist = abs(dx);
    462 			if (abs(dy) > dist)
    463 				dist = abs(dy);
    464 			if (dist == 2 || dist == 4) {
    465 				setModuleBounded(qrcode, 3 + dx, 3 + dy, false);
    466 				setModuleBounded(qrcode, qrsize - 4 + dx, 3 + dy, false);
    467 				setModuleBounded(qrcode, 3 + dx, qrsize - 4 + dy, false);
    468 			}
    469 		}
    470 	}
    471 	
    472 	// Draw numerous alignment patterns
    473 	uint8_t alignPatPos[7];
    474 	int numAlign = getAlignmentPatternPositions(version, alignPatPos);
    475 	for (int i = 0; i < numAlign; i++) {
    476 		for (int j = 0; j < numAlign; j++) {
    477 			if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))
    478 				continue;  // Don't draw on the three finder corners
    479 			for (int dy = -1; dy <= 1; dy++) {
    480 				for (int dx = -1; dx <= 1; dx++)
    481 					setModule(qrcode, alignPatPos[i] + dx, alignPatPos[j] + dy, dx == 0 && dy == 0);
    482 			}
    483 		}
    484 	}
    485 	
    486 	// Draw version blocks
    487 	if (version >= 7) {
    488 		// Calculate error correction code and pack bits
    489 		int rem = version;  // version is uint6, in the range [7, 40]
    490 		for (int i = 0; i < 12; i++)
    491 			rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
    492 		long bits = (long)version << 12 | rem;  // uint18
    493 		assert(bits >> 18 == 0);
    494 		
    495 		// Draw two copies
    496 		for (int i = 0; i < 6; i++) {
    497 			for (int j = 0; j < 3; j++) {
    498 				int k = qrsize - 11 + j;
    499 				setModule(qrcode, k, i, (bits & 1) != 0);
    500 				setModule(qrcode, i, k, (bits & 1) != 0);
    501 				bits >>= 1;
    502 			}
    503 		}
    504 	}
    505 }
    506 
    507 
    508 // Draws two copies of the format bits (with its own error correction code) based
    509 // on the given mask and error correction level. This always draws all modules of
    510 // the format bits, unlike drawWhiteFunctionModules() which might skip black modules.
    511 static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]) {
    512 	// Calculate error correction code and pack bits
    513 	assert(0 <= (int)mask && (int)mask <= 7);
    514 	static const int table[] = {1, 0, 3, 2};
    515 	int data = table[(int)ecl] << 3 | (int)mask;  // errCorrLvl is uint2, mask is uint3
    516 	int rem = data;
    517 	for (int i = 0; i < 10; i++)
    518 		rem = (rem << 1) ^ ((rem >> 9) * 0x537);
    519 	int bits = (data << 10 | rem) ^ 0x5412;  // uint15
    520 	assert(bits >> 15 == 0);
    521 	
    522 	// Draw first copy
    523 	for (int i = 0; i <= 5; i++)
    524 		setModule(qrcode, 8, i, getBit(bits, i));
    525 	setModule(qrcode, 8, 7, getBit(bits, 6));
    526 	setModule(qrcode, 8, 8, getBit(bits, 7));
    527 	setModule(qrcode, 7, 8, getBit(bits, 8));
    528 	for (int i = 9; i < 15; i++)
    529 		setModule(qrcode, 14 - i, 8, getBit(bits, i));
    530 	
    531 	// Draw second copy
    532 	int qrsize = qrcodegen_getSize(qrcode);
    533 	for (int i = 0; i < 8; i++)
    534 		setModule(qrcode, qrsize - 1 - i, 8, getBit(bits, i));
    535 	for (int i = 8; i < 15; i++)
    536 		setModule(qrcode, 8, qrsize - 15 + i, getBit(bits, i));
    537 	setModule(qrcode, 8, qrsize - 8, true);  // Always black
    538 }
    539 
    540 
    541 // Calculates and stores an ascending list of positions of alignment patterns
    542 // for this version number, returning the length of the list (in the range [0,7]).
    543 // Each position is in the range [0,177), and are used on both the x and y axes.
    544 // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
    545 testable int getAlignmentPatternPositions(int version, uint8_t result[7]) {
    546 	if (version == 1)
    547 		return 0;
    548 	int numAlign = version / 7 + 2;
    549 	int step = (version == 32) ? 26 :
    550 		(version*4 + numAlign*2 + 1) / (numAlign*2 - 2) * 2;
    551 	for (int i = numAlign - 1, pos = version * 4 + 10; i >= 1; i--, pos -= step)
    552 		result[i] = pos;
    553 	result[0] = 6;
    554 	return numAlign;
    555 }
    556 
    557 
    558 // Sets every pixel in the range [left : left + width] * [top : top + height] to black.
    559 static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]) {
    560 	for (int dy = 0; dy < height; dy++) {
    561 		for (int dx = 0; dx < width; dx++)
    562 			setModule(qrcode, left + dx, top + dy, true);
    563 	}
    564 }
    565 
    566 
    567 
    568 /*---- Drawing data modules and masking ----*/
    569 
    570 // Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of
    571 // the QR Code to be black at function modules and white at codeword modules (including unused remainder bits).
    572 static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]) {
    573 	int qrsize = qrcodegen_getSize(qrcode);
    574 	int i = 0;  // Bit index into the data
    575 	// Do the funny zigzag scan
    576 	for (int right = qrsize - 1; right >= 1; right -= 2) {  // Index of right column in each column pair
    577 		if (right == 6)
    578 			right = 5;
    579 		for (int vert = 0; vert < qrsize; vert++) {  // Vertical counter
    580 			for (int j = 0; j < 2; j++) {
    581 				int x = right - j;  // Actual x coordinate
    582 				bool upward = ((right + 1) & 2) == 0;
    583 				int y = upward ? qrsize - 1 - vert : vert;  // Actual y coordinate
    584 				if (!getModule(qrcode, x, y) && i < dataLen * 8) {
    585 					bool black = getBit(data[i >> 3], 7 - (i & 7));
    586 					setModule(qrcode, x, y, black);
    587 					i++;
    588 				}
    589 				// If this QR Code has any remainder bits (0 to 7), they were assigned as
    590 				// 0/false/white by the constructor and are left unchanged by this method
    591 			}
    592 		}
    593 	}
    594 	assert(i == dataLen * 8);
    595 }
    596 
    597 
    598 // XORs the codeword modules in this QR Code with the given mask pattern.
    599 // The function modules must be marked and the codeword bits must be drawn
    600 // before masking. Due to the arithmetic of XOR, calling applyMask() with
    601 // the same mask value a second time will undo the mask. A final well-formed
    602 // QR Code needs exactly one (not zero, two, etc.) mask applied.
    603 static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask) {
    604 	assert(0 <= (int)mask && (int)mask <= 7);  // Disallows qrcodegen_Mask_AUTO
    605 	int qrsize = qrcodegen_getSize(qrcode);
    606 	for (int y = 0; y < qrsize; y++) {
    607 		for (int x = 0; x < qrsize; x++) {
    608 			if (getModule(functionModules, x, y))
    609 				continue;
    610 			bool invert;
    611 			switch ((int)mask) {
    612 				case 0:  invert = (x + y) % 2 == 0;                    break;
    613 				case 1:  invert = y % 2 == 0;                          break;
    614 				case 2:  invert = x % 3 == 0;                          break;
    615 				case 3:  invert = (x + y) % 3 == 0;                    break;
    616 				case 4:  invert = (x / 3 + y / 2) % 2 == 0;            break;
    617 				case 5:  invert = x * y % 2 + x * y % 3 == 0;          break;
    618 				case 6:  invert = (x * y % 2 + x * y % 3) % 2 == 0;    break;
    619 				case 7:  invert = ((x + y) % 2 + x * y % 3) % 2 == 0;  break;
    620 				default:  assert(false);  return;
    621 			}
    622 			bool val = getModule(qrcode, x, y);
    623 			setModule(qrcode, x, y, val ^ invert);
    624 		}
    625 	}
    626 }
    627 
    628 
    629 // Calculates and returns the penalty score based on state of the given QR Code's current modules.
    630 // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
    631 static long getPenaltyScore(const uint8_t qrcode[]) {
    632 	int qrsize = qrcodegen_getSize(qrcode);
    633 	long result = 0;
    634 	
    635 	// Adjacent modules in row having same color, and finder-like patterns
    636 	for (int y = 0; y < qrsize; y++) {
    637 		unsigned char runHistory[7] = {0};
    638 		bool color = false;
    639 		unsigned char runX = 0;
    640 		for (int x = 0; x < qrsize; x++) {
    641 			if (getModule(qrcode, x, y) == color) {
    642 				runX++;
    643 				if (runX == 5)
    644 					result += PENALTY_N1;
    645 				else if (runX > 5)
    646 					result++;
    647 			} else {
    648 				addRunToHistory(runX, runHistory);
    649 				if (!color && hasFinderLikePattern(runHistory))
    650 					result += PENALTY_N3;
    651 				color = getModule(qrcode, x, y);
    652 				runX = 1;
    653 			}
    654 		}
    655 		addRunToHistory(runX, runHistory);
    656 		if (color)
    657 			addRunToHistory(0, runHistory);  // Dummy run of white
    658 		if (hasFinderLikePattern(runHistory))
    659 			result += PENALTY_N3;
    660 	}
    661 	// Adjacent modules in column having same color, and finder-like patterns
    662 	for (int x = 0; x < qrsize; x++) {
    663 		unsigned char runHistory[7] = {0};
    664 		bool color = false;
    665 		unsigned char runY = 0;
    666 		for (int y = 0; y < qrsize; y++) {
    667 			if (getModule(qrcode, x, y) == color) {
    668 				runY++;
    669 				if (runY == 5)
    670 					result += PENALTY_N1;
    671 				else if (runY > 5)
    672 					result++;
    673 			} else {
    674 				addRunToHistory(runY, runHistory);
    675 				if (!color && hasFinderLikePattern(runHistory))
    676 					result += PENALTY_N3;
    677 				color = getModule(qrcode, x, y);
    678 				runY = 1;
    679 			}
    680 		}
    681 		addRunToHistory(runY, runHistory);
    682 		if (color)
    683 			addRunToHistory(0, runHistory);  // Dummy run of white
    684 		if (hasFinderLikePattern(runHistory))
    685 			result += PENALTY_N3;
    686 	}
    687 	
    688 	// 2*2 blocks of modules having same color
    689 	for (int y = 0; y < qrsize - 1; y++) {
    690 		for (int x = 0; x < qrsize - 1; x++) {
    691 			bool  color = getModule(qrcode, x, y);
    692 			if (  color == getModule(qrcode, x + 1, y) &&
    693 			      color == getModule(qrcode, x, y + 1) &&
    694 			      color == getModule(qrcode, x + 1, y + 1))
    695 				result += PENALTY_N2;
    696 		}
    697 	}
    698 	
    699 	// Balance of black and white modules
    700 	int black = 0;
    701 	for (int y = 0; y < qrsize; y++) {
    702 		for (int x = 0; x < qrsize; x++) {
    703 			if (getModule(qrcode, x, y))
    704 				black++;
    705 		}
    706 	}
    707 	int total = qrsize * qrsize;  // Note that size is odd, so black/total != 1/2
    708 	// Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)%
    709 	int k = (int)((labs(black * 20L - total * 10L) + total - 1) / total) - 1;
    710 	result += k * PENALTY_N4;
    711 	return result;
    712 }
    713 
    714 
    715 // Inserts the given value to the front of the given array, which shifts over the
    716 // existing values and deletes the last value. A helper function for getPenaltyScore().
    717 static void addRunToHistory(unsigned char run, unsigned char history[7]) {
    718 	memmove(&history[1], &history[0], 6 * sizeof(history[0]));
    719 	history[0] = run;
    720 }
    721 
    722 
    723 // Tests whether the given run history has the pattern of ratio 1:1:3:1:1 in the middle, and
    724 // surrounded by at least 4 on either or both ends. A helper function for getPenaltyScore().
    725 // Must only be called immediately after a run of white modules has ended.
    726 static bool hasFinderLikePattern(const unsigned char runHistory[7]) {
    727 	unsigned char n = runHistory[1];
    728 	// The maximum QR Code size is 177, hence the run length n <= 177.
    729 	// Arithmetic is promoted to int, so n*4 will not overflow.
    730 	return n > 0 && runHistory[2] == n && runHistory[4] == n && runHistory[5] == n
    731 		&& runHistory[3] == n * 3 && (runHistory[0] >= n * 4 || runHistory[6] >= n * 4);
    732 }
    733 
    734 
    735 
    736 /*---- Basic QR Code information ----*/
    737 
    738 // Public function - see documentation comment in header file.
    739 int qrcodegen_getSize(const uint8_t qrcode[]) {
    740 	assert(qrcode != NULL);
    741 	int result = qrcode[0];
    742 	assert((qrcodegen_VERSION_MIN * 4 + 17) <= result
    743 		&& result <= (qrcodegen_VERSION_MAX * 4 + 17));
    744 	return result;
    745 }
    746 
    747 
    748 // Public function - see documentation comment in header file.
    749 bool qrcodegen_getModule(const uint8_t qrcode[], int x, int y) {
    750 	assert(qrcode != NULL);
    751 	int qrsize = qrcode[0];
    752 	return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y);
    753 }
    754 
    755 
    756 // Gets the module at the given coordinates, which must be in bounds.
    757 testable bool getModule(const uint8_t qrcode[], int x, int y) {
    758 	int qrsize = qrcode[0];
    759 	assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize);
    760 	int index = y * qrsize + x;
    761 	return getBit(qrcode[(index >> 3) + 1], index & 7);
    762 }
    763 
    764 
    765 // Sets the module at the given coordinates, which must be in bounds.
    766 testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack) {
    767 	int qrsize = qrcode[0];
    768 	assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize);
    769 	int index = y * qrsize + x;
    770 	int bitIndex = index & 7;
    771 	int byteIndex = (index >> 3) + 1;
    772 	if (isBlack)
    773 		qrcode[byteIndex] |= 1 << bitIndex;
    774 	else
    775 		qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF;
    776 }
    777 
    778 
    779 // Sets the module at the given coordinates, doing nothing if out of bounds.
    780 testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack) {
    781 	int qrsize = qrcode[0];
    782 	if (0 <= x && x < qrsize && 0 <= y && y < qrsize)
    783 		setModule(qrcode, x, y, isBlack);
    784 }
    785 
    786 
    787 // Returns true iff the i'th bit of x is set to 1. Requires x >= 0 and 0 <= i <= 14.
    788 static bool getBit(int x, int i) {
    789 	return ((x >> i) & 1) != 0;
    790 }
    791 
    792 
    793 
    794 /*---- Segment handling ----*/
    795 
    796 // Public function - see documentation comment in header file.
    797 bool qrcodegen_isAlphanumeric(const char *text) {
    798 	assert(text != NULL);
    799 	for (; *text != '\0'; text++) {
    800 		if (strchr(ALPHANUMERIC_CHARSET, *text) == NULL)
    801 			return false;
    802 	}
    803 	return true;
    804 }
    805 
    806 
    807 // Public function - see documentation comment in header file.
    808 bool qrcodegen_isNumeric(const char *text) {
    809 	assert(text != NULL);
    810 	for (; *text != '\0'; text++) {
    811 		if (*text < '0' || *text > '9')
    812 			return false;
    813 	}
    814 	return true;
    815 }
    816 
    817 
    818 // Public function - see documentation comment in header file.
    819 size_t qrcodegen_calcSegmentBufferSize(enum qrcodegen_Mode mode, size_t numChars) {
    820 	int temp = calcSegmentBitLength(mode, numChars);
    821 	if (temp == -1)
    822 		return SIZE_MAX;
    823 	assert(0 <= temp && temp <= INT16_MAX);
    824 	return ((size_t)temp + 7) / 8;
    825 }
    826 
    827 
    828 // Returns the number of data bits needed to represent a segment
    829 // containing the given number of characters using the given mode. Notes:
    830 // - Returns -1 on failure, i.e. numChars > INT16_MAX or
    831 //   the number of needed bits exceeds INT16_MAX (i.e. 32767).
    832 // - Otherwise, all valid results are in the range [0, INT16_MAX].
    833 // - For byte mode, numChars measures the number of bytes, not Unicode code points.
    834 // - For ECI mode, numChars must be 0, and the worst-case number of bits is returned.
    835 //   An actual ECI segment can have shorter data. For non-ECI modes, the result is exact.
    836 testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars) {
    837 	// All calculations are designed to avoid overflow on all platforms
    838 	if (numChars > (unsigned int)INT16_MAX)
    839 		return -1;
    840 	long result = (long)numChars;
    841 	if (mode == qrcodegen_Mode_NUMERIC)
    842 		result = (result * 10 + 2) / 3;  // ceil(10/3 * n)
    843 	else if (mode == qrcodegen_Mode_ALPHANUMERIC)
    844 		result = (result * 11 + 1) / 2;  // ceil(11/2 * n)
    845 	else if (mode == qrcodegen_Mode_BYTE)
    846 		result *= 8;
    847 	else if (mode == qrcodegen_Mode_KANJI)
    848 		result *= 13;
    849 	else if (mode == qrcodegen_Mode_ECI && numChars == 0)
    850 		result = 3 * 8;
    851 	else {  // Invalid argument
    852 		assert(false);
    853 		return -1;
    854 	}
    855 	assert(result >= 0);
    856 	if ((unsigned int)result > (unsigned int)INT16_MAX)
    857 		return -1;
    858 	return (int)result;
    859 }
    860 
    861 
    862 // Public function - see documentation comment in header file.
    863 struct qrcodegen_Segment qrcodegen_makeBytes(const uint8_t data[], size_t len, uint8_t buf[]) {
    864 	assert(data != NULL || len == 0);
    865 	struct qrcodegen_Segment result;
    866 	result.mode = qrcodegen_Mode_BYTE;
    867 	result.bitLength = calcSegmentBitLength(result.mode, len);
    868 	assert(result.bitLength != -1);
    869 	result.numChars = (int)len;
    870 	if (len > 0)
    871 		memcpy(buf, data, len * sizeof(buf[0]));
    872 	result.data = buf;
    873 	return result;
    874 }
    875 
    876 
    877 // Public function - see documentation comment in header file.
    878 struct qrcodegen_Segment qrcodegen_makeNumeric(const char *digits, uint8_t buf[]) {
    879 	assert(digits != NULL);
    880 	struct qrcodegen_Segment result;
    881 	size_t len = strlen(digits);
    882 	result.mode = qrcodegen_Mode_NUMERIC;
    883 	int bitLen = calcSegmentBitLength(result.mode, len);
    884 	assert(bitLen != -1);
    885 	result.numChars = (int)len;
    886 	if (bitLen > 0)
    887 		memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0]));
    888 	result.bitLength = 0;
    889 	
    890 	unsigned int accumData = 0;
    891 	int accumCount = 0;
    892 	for (; *digits != '\0'; digits++) {
    893 		char c = *digits;
    894 		assert('0' <= c && c <= '9');
    895 		accumData = accumData * 10 + (unsigned int)(c - '0');
    896 		accumCount++;
    897 		if (accumCount == 3) {
    898 			appendBitsToBuffer(accumData, 10, buf, &result.bitLength);
    899 			accumData = 0;
    900 			accumCount = 0;
    901 		}
    902 	}
    903 	if (accumCount > 0)  // 1 or 2 digits remaining
    904 		appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength);
    905 	assert(result.bitLength == bitLen);
    906 	result.data = buf;
    907 	return result;
    908 }
    909 
    910 
    911 // Public function - see documentation comment in header file.
    912 struct qrcodegen_Segment qrcodegen_makeAlphanumeric(const char *text, uint8_t buf[]) {
    913 	assert(text != NULL);
    914 	struct qrcodegen_Segment result;
    915 	size_t len = strlen(text);
    916 	result.mode = qrcodegen_Mode_ALPHANUMERIC;
    917 	int bitLen = calcSegmentBitLength(result.mode, len);
    918 	assert(bitLen != -1);
    919 	result.numChars = (int)len;
    920 	if (bitLen > 0)
    921 		memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0]));
    922 	result.bitLength = 0;
    923 	
    924 	unsigned int accumData = 0;
    925 	int accumCount = 0;
    926 	for (; *text != '\0'; text++) {
    927 		const char *temp = strchr(ALPHANUMERIC_CHARSET, *text);
    928 		assert(temp != NULL);
    929 		accumData = accumData * 45 + (unsigned int)(temp - ALPHANUMERIC_CHARSET);
    930 		accumCount++;
    931 		if (accumCount == 2) {
    932 			appendBitsToBuffer(accumData, 11, buf, &result.bitLength);
    933 			accumData = 0;
    934 			accumCount = 0;
    935 		}
    936 	}
    937 	if (accumCount > 0)  // 1 character remaining
    938 		appendBitsToBuffer(accumData, 6, buf, &result.bitLength);
    939 	assert(result.bitLength == bitLen);
    940 	result.data = buf;
    941 	return result;
    942 }
    943 
    944 
    945 // Public function - see documentation comment in header file.
    946 struct qrcodegen_Segment qrcodegen_makeEci(long assignVal, uint8_t buf[]) {
    947 	struct qrcodegen_Segment result;
    948 	result.mode = qrcodegen_Mode_ECI;
    949 	result.numChars = 0;
    950 	result.bitLength = 0;
    951 	if (assignVal < 0) {
    952 		assert(false);
    953 	} else if (assignVal < (1 << 7)) {
    954 		memset(buf, 0, 1 * sizeof(buf[0]));
    955 		appendBitsToBuffer(assignVal, 8, buf, &result.bitLength);
    956 	} else if (assignVal < (1 << 14)) {
    957 		memset(buf, 0, 2 * sizeof(buf[0]));
    958 		appendBitsToBuffer(2, 2, buf, &result.bitLength);
    959 		appendBitsToBuffer(assignVal, 14, buf, &result.bitLength);
    960 	} else if (assignVal < 1000000L) {
    961 		memset(buf, 0, 3 * sizeof(buf[0]));
    962 		appendBitsToBuffer(6, 3, buf, &result.bitLength);
    963 		appendBitsToBuffer(assignVal >> 10, 11, buf, &result.bitLength);
    964 		appendBitsToBuffer(assignVal & 0x3FF, 10, buf, &result.bitLength);
    965 	} else {
    966 		assert(false);
    967 	}
    968 	result.data = buf;
    969 	return result;
    970 }
    971 
    972 
    973 // Calculates the number of bits needed to encode the given segments at the given version.
    974 // Returns a non-negative number if successful. Otherwise returns -1 if a segment has too
    975 // many characters to fit its length field, or the total bits exceeds INT16_MAX.
    976 testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version) {
    977 	assert(segs != NULL || len == 0);
    978 	long result = 0;
    979 	for (size_t i = 0; i < len; i++) {
    980 		int numChars  = segs[i].numChars;
    981 		int bitLength = segs[i].bitLength;
    982 		assert(0 <= numChars  && numChars  <= INT16_MAX);
    983 		assert(0 <= bitLength && bitLength <= INT16_MAX);
    984 		int ccbits = numCharCountBits(segs[i].mode, version);
    985 		assert(0 <= ccbits && ccbits <= 16);
    986 		if (numChars >= (1L << ccbits))
    987 			return -1;  // The segment's length doesn't fit the field's bit width
    988 		result += 4L + ccbits + bitLength;
    989 		if (result > INT16_MAX)
    990 			return -1;  // The sum might overflow an int type
    991 	}
    992 	assert(0 <= result && result <= INT16_MAX);
    993 	return (int)result;
    994 }
    995 
    996 
    997 // Returns the bit width of the character count field for a segment in the given mode
    998 // in a QR Code at the given version number. The result is in the range [0, 16].
    999 static int numCharCountBits(enum qrcodegen_Mode mode, int version) {
   1000 	assert(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX);
   1001 	int i = (version + 7) / 17;
   1002 	switch (mode) {
   1003 		case qrcodegen_Mode_NUMERIC     : { static const int temp[] = {10, 12, 14}; return temp[i]; }
   1004 		case qrcodegen_Mode_ALPHANUMERIC: { static const int temp[] = { 9, 11, 13}; return temp[i]; }
   1005 		case qrcodegen_Mode_BYTE        : { static const int temp[] = { 8, 16, 16}; return temp[i]; }
   1006 		case qrcodegen_Mode_KANJI       : { static const int temp[] = { 8, 10, 12}; return temp[i]; }
   1007 		case qrcodegen_Mode_ECI         : return 0;
   1008 		default:  assert(false);  return -1;  // Dummy value
   1009 	}
   1010 }
   1011 
   1012 int qrcodegen_getMinFitVersion(enum qrcodegen_Ecc ecl, size_t dataLen)
   1013 {
   1014 	struct qrcodegen_Segment seg;
   1015 	seg.mode = qrcodegen_Mode_BYTE;
   1016 	seg.bitLength = calcSegmentBitLength(seg.mode, dataLen);
   1017 	seg.numChars = (int)dataLen;
   1018 
   1019 	for (int version = qrcodegen_VERSION_MIN; version <= qrcodegen_VERSION_MAX; version++) {
   1020 		int dataCapacityBits = getNumDataCodewords(version, ecl) * 8;  // Number of data bits available
   1021 		int dataUsedBits = getTotalBits(&seg, 1, version);
   1022 		if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits)
   1023 			return version;
   1024 	}
   1025 	return -1;
   1026 }
   1027 
   1028 int qrcodegen_version2size(int version)
   1029 {
   1030 	if (version < qrcodegen_VERSION_MIN || version > qrcodegen_VERSION_MAX) {
   1031 		return -1;
   1032 	}
   1033 
   1034 	return ((version - 1)*4 + 21);
   1035 }