acid-drop- Hacking the planet from a LilyGo T-Deck using custom firmware |
git clone git://git.acid.vegas/acid-drop.git |
Log | Files | Refs | Archive | README | LICENSE |
qrcodegen.c (40821B)
1 /* 2 * QR Code generator library (C) 3 * 4 * Copyright (c) Project Nayuki. (MIT License) 5 * https://www.nayuki.io/page/qr-code-generator-library 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy of 8 * this software and associated documentation files (the "Software"), to deal in 9 * the Software without restriction, including without limitation the rights to 10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of 11 * the Software, and to permit persons to whom the Software is furnished to do so, 12 * subject to the following conditions: 13 * - The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * - The Software is provided "as is", without warranty of any kind, express or 16 * implied, including but not limited to the warranties of merchantability, 17 * fitness for a particular purpose and noninfringement. In no event shall the 18 * authors or copyright holders be liable for any claim, damages or other 19 * liability, whether in an action of contract, tort or otherwise, arising from, 20 * out of or in connection with the Software or the use or other dealings in the 21 * Software. 22 */ 23 24 #include <assert.h> 25 #include <limits.h> 26 #include <stdlib.h> 27 #include <string.h> 28 #include "qrcodegen.h" 29 30 #ifndef QRCODEGEN_TEST 31 #define testable static // Keep functions private 32 #else 33 #define testable // Expose private functions 34 #endif 35 36 37 /*---- Forward declarations for private functions ----*/ 38 39 // Regarding all public and private functions defined in this source file: 40 // - They require all pointer/array arguments to be not null unless the array length is zero. 41 // - They only read input scalar/array arguments, write to output pointer/array 42 // arguments, and return scalar values; they are "pure" functions. 43 // - They don't read mutable global variables or write to any global variables. 44 // - They don't perform I/O, read the clock, print to console, etc. 45 // - They allocate a small and constant amount of stack memory. 46 // - They don't allocate or free any memory on the heap. 47 // - They don't recurse or mutually recurse. All the code 48 // could be inlined into the top-level public functions. 49 // - They run in at most quadratic time with respect to input arguments. 50 // Most functions run in linear time, and some in constant time. 51 // There are no unbounded loops or non-obvious termination conditions. 52 // - They are completely thread-safe if the caller does not give the 53 // same writable buffer to concurrent calls to these functions. 54 55 testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen); 56 57 testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]); 58 testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl); 59 testable int getNumRawDataModules(int ver); 60 61 testable void calcReedSolomonGenerator(int degree, uint8_t result[]); 62 testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen, 63 const uint8_t generator[], int degree, uint8_t result[]); 64 testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y); 65 66 testable void initializeFunctionModules(int version, uint8_t qrcode[]); 67 static void drawWhiteFunctionModules(uint8_t qrcode[], int version); 68 static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]); 69 testable int getAlignmentPatternPositions(int version, uint8_t result[7]); 70 static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]); 71 72 static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]); 73 static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask); 74 static long getPenaltyScore(const uint8_t qrcode[]); 75 static void addRunToHistory(unsigned char run, unsigned char history[7]); 76 static bool hasFinderLikePattern(const unsigned char runHistory[7]); 77 78 testable bool getModule(const uint8_t qrcode[], int x, int y); 79 testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack); 80 testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack); 81 static bool getBit(int x, int i); 82 83 testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars); 84 testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version); 85 static int numCharCountBits(enum qrcodegen_Mode mode, int version); 86 87 88 89 /*---- Private tables of constants ----*/ 90 91 // The set of all legal characters in alphanumeric mode, where each character 92 // value maps to the index in the string. For checking text and encoding segments. 93 static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; 94 95 // For generating error correction codes. 96 testable const int8_t ECC_CODEWORDS_PER_BLOCK[4][41] = { 97 // Version: (note that index 0 is for padding, and is set to an illegal value) 98 //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level 99 {-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Low 100 {-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28}, // Medium 101 {-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Quartile 102 {-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // High 103 }; 104 105 #define qrcodegen_REED_SOLOMON_DEGREE_MAX 30 // Based on the table above 106 107 // For generating error correction codes. 108 testable const int8_t NUM_ERROR_CORRECTION_BLOCKS[4][41] = { 109 // Version: (note that index 0 is for padding, and is set to an illegal value) 110 //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level 111 {-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25}, // Low 112 {-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49}, // Medium 113 {-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68}, // Quartile 114 {-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81}, // High 115 }; 116 117 // For automatic mask pattern selection. 118 static const int PENALTY_N1 = 3; 119 static const int PENALTY_N2 = 3; 120 static const int PENALTY_N3 = 40; 121 static const int PENALTY_N4 = 10; 122 123 124 125 /*---- High-level QR Code encoding functions ----*/ 126 127 // Public function - see documentation comment in header file. 128 bool qrcodegen_encodeText(const char *text, uint8_t tempBuffer[], uint8_t qrcode[], 129 enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { 130 131 size_t textLen = strlen(text); 132 if (textLen == 0) 133 return qrcodegen_encodeSegmentsAdvanced(NULL, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); 134 size_t bufLen = qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion); 135 136 struct qrcodegen_Segment seg; 137 if (qrcodegen_isNumeric(text)) { 138 if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen) 139 goto fail; 140 seg = qrcodegen_makeNumeric(text, tempBuffer); 141 } else if (qrcodegen_isAlphanumeric(text)) { 142 if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen) 143 goto fail; 144 seg = qrcodegen_makeAlphanumeric(text, tempBuffer); 145 } else { 146 if (textLen > bufLen) 147 goto fail; 148 for (size_t i = 0; i < textLen; i++) 149 tempBuffer[i] = (uint8_t)text[i]; 150 seg.mode = qrcodegen_Mode_BYTE; 151 seg.bitLength = calcSegmentBitLength(seg.mode, textLen); 152 if (seg.bitLength == -1) 153 goto fail; 154 seg.numChars = (int)textLen; 155 seg.data = tempBuffer; 156 } 157 return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); 158 159 fail: 160 qrcode[0] = 0; // Set size to invalid value for safety 161 return false; 162 } 163 164 165 // Public function - see documentation comment in header file. 166 bool qrcodegen_encodeBinary(uint8_t dataAndTemp[], size_t dataLen, uint8_t qrcode[], 167 enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { 168 169 struct qrcodegen_Segment seg; 170 seg.mode = qrcodegen_Mode_BYTE; 171 seg.bitLength = calcSegmentBitLength(seg.mode, dataLen); 172 if (seg.bitLength == -1) { 173 qrcode[0] = 0; // Set size to invalid value for safety 174 return false; 175 } 176 seg.numChars = (int)dataLen; 177 seg.data = dataAndTemp; 178 return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode); 179 } 180 181 182 // Appends the given number of low-order bits of the given value to the given byte-based 183 // bit buffer, increasing the bit length. Requires 0 <= numBits <= 16 and val < 2^numBits. 184 testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen) { 185 assert(0 <= numBits && numBits <= 16 && (unsigned long)val >> numBits == 0); 186 for (int i = numBits - 1; i >= 0; i--, (*bitLen)++) 187 buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7)); 188 } 189 190 191 192 /*---- Low-level QR Code encoding functions ----*/ 193 194 // Public function - see documentation comment in header file. 195 bool qrcodegen_encodeSegments(const struct qrcodegen_Segment segs[], size_t len, 196 enum qrcodegen_Ecc ecl, uint8_t tempBuffer[], uint8_t qrcode[]) { 197 return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl, 198 qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, -1, true, tempBuffer, qrcode); 199 } 200 201 202 // Public function - see documentation comment in header file. 203 bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], size_t len, enum qrcodegen_Ecc ecl, 204 int minVersion, int maxVersion, int mask, bool boostEcl, uint8_t tempBuffer[], uint8_t qrcode[]) { 205 assert(segs != NULL || len == 0); 206 assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX); 207 assert(0 <= (int)ecl && (int)ecl <= 3 && -1 <= (int)mask && (int)mask <= 7); 208 209 // Find the minimal version number to use 210 int version, dataUsedBits; 211 for (version = minVersion; ; version++) { 212 int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; // Number of data bits available 213 dataUsedBits = getTotalBits(segs, len, version); 214 if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits) 215 break; // This version number is found to be suitable 216 if (version >= maxVersion) { // All versions in the range could not fit the given data 217 qrcode[0] = 0; // Set size to invalid value for safety 218 return false; 219 } 220 } 221 assert(dataUsedBits != -1); 222 223 // Increase the error correction level while the data still fits in the current version number 224 for (int i = (int)qrcodegen_Ecc_MEDIUM; i <= (int)qrcodegen_Ecc_HIGH; i++) { // From low to high 225 if (boostEcl && dataUsedBits <= getNumDataCodewords(version, (enum qrcodegen_Ecc)i) * 8) 226 ecl = (enum qrcodegen_Ecc)i; 227 } 228 229 // Concatenate all segments to create the data bit string 230 memset(qrcode, 0, qrcodegen_BUFFER_LEN_FOR_VERSION(version) * sizeof(qrcode[0])); 231 int bitLen = 0; 232 for (size_t i = 0; i < len; i++) { 233 const struct qrcodegen_Segment *seg = &segs[i]; 234 appendBitsToBuffer((int)seg->mode, 4, qrcode, &bitLen); 235 appendBitsToBuffer(seg->numChars, numCharCountBits(seg->mode, version), qrcode, &bitLen); 236 for (int j = 0; j < seg->bitLength; j++) 237 appendBitsToBuffer((seg->data[j >> 3] >> (7 - (j & 7))) & 1, 1, qrcode, &bitLen); 238 } 239 assert(bitLen == dataUsedBits); 240 241 // Add terminator and pad up to a byte if applicable 242 int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; 243 assert(bitLen <= dataCapacityBits); 244 int terminatorBits = dataCapacityBits - bitLen; 245 if (terminatorBits > 4) 246 terminatorBits = 4; 247 appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen); 248 appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen); 249 assert(bitLen % 8 == 0); 250 251 // Pad with alternating bytes until data capacity is reached 252 for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11) 253 appendBitsToBuffer(padByte, 8, qrcode, &bitLen); 254 255 // Draw function and data codeword modules 256 addEccAndInterleave(qrcode, version, ecl, tempBuffer); 257 initializeFunctionModules(version, qrcode); 258 drawCodewords(tempBuffer, getNumRawDataModules(version) / 8, qrcode); 259 drawWhiteFunctionModules(qrcode, version); 260 initializeFunctionModules(version, tempBuffer); 261 262 // Handle masking 263 if (mask == qrcodegen_Mask_AUTO) { // Automatically choose best mask 264 long minPenalty = LONG_MAX; 265 for (int i = 0; i < 8; i++) { 266 enum qrcodegen_Mask msk = (enum qrcodegen_Mask)i; 267 applyMask(tempBuffer, qrcode, msk); 268 drawFormatBits(ecl, msk, qrcode); 269 long penalty = getPenaltyScore(qrcode); 270 if (penalty < minPenalty) { 271 mask = msk; 272 minPenalty = penalty; 273 } 274 applyMask(tempBuffer, qrcode, msk); // Undoes the mask due to XOR 275 } 276 } 277 assert(0 <= (int)mask && (int)mask <= 7); 278 applyMask(tempBuffer, qrcode, mask); 279 drawFormatBits(ecl, mask, qrcode); 280 return true; 281 } 282 283 284 285 /*---- Error correction code generation functions ----*/ 286 287 // Appends error correction bytes to each block of the given data array, then interleaves 288 // bytes from the blocks and stores them in the result array. data[0 : dataLen] contains 289 // the input data. data[dataLen : rawCodewords] is used as a temporary work area and will 290 // be clobbered by this function. The final answer is stored in result[0 : rawCodewords]. 291 testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]) { 292 // Calculate parameter numbers 293 assert(0 <= (int)ecl && (int)ecl < 4 && qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); 294 int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[(int)ecl][version]; 295 int blockEccLen = ECC_CODEWORDS_PER_BLOCK [(int)ecl][version]; 296 int rawCodewords = getNumRawDataModules(version) / 8; 297 int dataLen = getNumDataCodewords(version, ecl); 298 int numShortBlocks = numBlocks - rawCodewords % numBlocks; 299 int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen; 300 301 // Split data into blocks, calculate ECC, and interleave 302 // (not concatenate) the bytes into a single sequence 303 uint8_t generator[qrcodegen_REED_SOLOMON_DEGREE_MAX]; 304 calcReedSolomonGenerator(blockEccLen, generator); 305 const uint8_t *dat = data; 306 for (int i = 0; i < numBlocks; i++) { 307 int datLen = shortBlockDataLen + (i < numShortBlocks ? 0 : 1); 308 uint8_t *ecc = &data[dataLen]; // Temporary storage 309 calcReedSolomonRemainder(dat, datLen, generator, blockEccLen, ecc); 310 for (int j = 0, k = i; j < datLen; j++, k += numBlocks) { // Copy data 311 if (j == shortBlockDataLen) 312 k -= numShortBlocks; 313 result[k] = dat[j]; 314 } 315 for (int j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks) // Copy ECC 316 result[k] = ecc[j]; 317 dat += datLen; 318 } 319 } 320 321 322 // Returns the number of 8-bit codewords that can be used for storing data (not ECC), 323 // for the given version number and error correction level. The result is in the range [9, 2956]. 324 testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl) { 325 int v = version, e = (int)ecl; 326 assert(0 <= e && e < 4); 327 return getNumRawDataModules(v) / 8 328 - ECC_CODEWORDS_PER_BLOCK [e][v] 329 * NUM_ERROR_CORRECTION_BLOCKS[e][v]; 330 } 331 332 333 // Returns the number of data bits that can be stored in a QR Code of the given version number, after 334 // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. 335 // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. 336 testable int getNumRawDataModules(int ver) { 337 assert(qrcodegen_VERSION_MIN <= ver && ver <= qrcodegen_VERSION_MAX); 338 int result = (16 * ver + 128) * ver + 64; 339 if (ver >= 2) { 340 int numAlign = ver / 7 + 2; 341 result -= (25 * numAlign - 10) * numAlign - 55; 342 if (ver >= 7) 343 result -= 36; 344 } 345 return result; 346 } 347 348 349 350 /*---- Reed-Solomon ECC generator functions ----*/ 351 352 // Calculates the Reed-Solomon generator polynomial of the given degree, storing in result[0 : degree]. 353 testable void calcReedSolomonGenerator(int degree, uint8_t result[]) { 354 // Start with the monomial x^0 355 assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX); 356 memset(result, 0, degree * sizeof(result[0])); 357 result[degree - 1] = 1; 358 359 // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), 360 // drop the highest term, and store the rest of the coefficients in order of descending powers. 361 // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). 362 uint8_t root = 1; 363 for (int i = 0; i < degree; i++) { 364 // Multiply the current product by (x - r^i) 365 for (int j = 0; j < degree; j++) { 366 result[j] = finiteFieldMultiply(result[j], root); 367 if (j + 1 < degree) 368 result[j] ^= result[j + 1]; 369 } 370 root = finiteFieldMultiply(root, 0x02); 371 } 372 } 373 374 375 // Calculates the remainder of the polynomial data[0 : dataLen] when divided by the generator[0 : degree], where all 376 // polynomials are in big endian and the generator has an implicit leading 1 term, storing the result in result[0 : degree]. 377 testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen, 378 const uint8_t generator[], int degree, uint8_t result[]) { 379 380 // Perform polynomial division 381 assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX); 382 memset(result, 0, degree * sizeof(result[0])); 383 for (int i = 0; i < dataLen; i++) { 384 uint8_t factor = data[i] ^ result[0]; 385 memmove(&result[0], &result[1], (degree - 1) * sizeof(result[0])); 386 result[degree - 1] = 0; 387 for (int j = 0; j < degree; j++) 388 result[j] ^= finiteFieldMultiply(generator[j], factor); 389 } 390 } 391 392 #undef qrcodegen_REED_SOLOMON_DEGREE_MAX 393 394 395 // Returns the product of the two given field elements modulo GF(2^8/0x11D). 396 // All inputs are valid. This could be implemented as a 256*256 lookup table. 397 testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y) { 398 // Russian peasant multiplication 399 uint8_t z = 0; 400 for (int i = 7; i >= 0; i--) { 401 z = (z << 1) ^ ((z >> 7) * 0x11D); 402 z ^= ((y >> i) & 1) * x; 403 } 404 return z; 405 } 406 407 408 409 /*---- Drawing function modules ----*/ 410 411 // Clears the given QR Code grid with white modules for the given 412 // version's size, then marks every function module as black. 413 testable void initializeFunctionModules(int version, uint8_t qrcode[]) { 414 // Initialize QR Code 415 int qrsize = version * 4 + 17; 416 memset(qrcode, 0, ((qrsize * qrsize + 7) / 8 + 1) * sizeof(qrcode[0])); 417 qrcode[0] = (uint8_t)qrsize; 418 419 // Fill horizontal and vertical timing patterns 420 fillRectangle(6, 0, 1, qrsize, qrcode); 421 fillRectangle(0, 6, qrsize, 1, qrcode); 422 423 // Fill 3 finder patterns (all corners except bottom right) and format bits 424 fillRectangle(0, 0, 9, 9, qrcode); 425 fillRectangle(qrsize - 8, 0, 8, 9, qrcode); 426 fillRectangle(0, qrsize - 8, 9, 8, qrcode); 427 428 // Fill numerous alignment patterns 429 uint8_t alignPatPos[7]; 430 int numAlign = getAlignmentPatternPositions(version, alignPatPos); 431 for (int i = 0; i < numAlign; i++) { 432 for (int j = 0; j < numAlign; j++) { 433 // Don't draw on the three finder corners 434 if (!((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))) 435 fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode); 436 } 437 } 438 439 // Fill version blocks 440 if (version >= 7) { 441 fillRectangle(qrsize - 11, 0, 3, 6, qrcode); 442 fillRectangle(0, qrsize - 11, 6, 3, qrcode); 443 } 444 } 445 446 447 // Draws white function modules and possibly some black modules onto the given QR Code, without changing 448 // non-function modules. This does not draw the format bits. This requires all function modules to be previously 449 // marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules. 450 static void drawWhiteFunctionModules(uint8_t qrcode[], int version) { 451 // Draw horizontal and vertical timing patterns 452 int qrsize = qrcodegen_getSize(qrcode); 453 for (int i = 7; i < qrsize - 7; i += 2) { 454 setModule(qrcode, 6, i, false); 455 setModule(qrcode, i, 6, false); 456 } 457 458 // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) 459 for (int dy = -4; dy <= 4; dy++) { 460 for (int dx = -4; dx <= 4; dx++) { 461 int dist = abs(dx); 462 if (abs(dy) > dist) 463 dist = abs(dy); 464 if (dist == 2 || dist == 4) { 465 setModuleBounded(qrcode, 3 + dx, 3 + dy, false); 466 setModuleBounded(qrcode, qrsize - 4 + dx, 3 + dy, false); 467 setModuleBounded(qrcode, 3 + dx, qrsize - 4 + dy, false); 468 } 469 } 470 } 471 472 // Draw numerous alignment patterns 473 uint8_t alignPatPos[7]; 474 int numAlign = getAlignmentPatternPositions(version, alignPatPos); 475 for (int i = 0; i < numAlign; i++) { 476 for (int j = 0; j < numAlign; j++) { 477 if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) 478 continue; // Don't draw on the three finder corners 479 for (int dy = -1; dy <= 1; dy++) { 480 for (int dx = -1; dx <= 1; dx++) 481 setModule(qrcode, alignPatPos[i] + dx, alignPatPos[j] + dy, dx == 0 && dy == 0); 482 } 483 } 484 } 485 486 // Draw version blocks 487 if (version >= 7) { 488 // Calculate error correction code and pack bits 489 int rem = version; // version is uint6, in the range [7, 40] 490 for (int i = 0; i < 12; i++) 491 rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); 492 long bits = (long)version << 12 | rem; // uint18 493 assert(bits >> 18 == 0); 494 495 // Draw two copies 496 for (int i = 0; i < 6; i++) { 497 for (int j = 0; j < 3; j++) { 498 int k = qrsize - 11 + j; 499 setModule(qrcode, k, i, (bits & 1) != 0); 500 setModule(qrcode, i, k, (bits & 1) != 0); 501 bits >>= 1; 502 } 503 } 504 } 505 } 506 507 508 // Draws two copies of the format bits (with its own error correction code) based 509 // on the given mask and error correction level. This always draws all modules of 510 // the format bits, unlike drawWhiteFunctionModules() which might skip black modules. 511 static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]) { 512 // Calculate error correction code and pack bits 513 assert(0 <= (int)mask && (int)mask <= 7); 514 static const int table[] = {1, 0, 3, 2}; 515 int data = table[(int)ecl] << 3 | (int)mask; // errCorrLvl is uint2, mask is uint3 516 int rem = data; 517 for (int i = 0; i < 10; i++) 518 rem = (rem << 1) ^ ((rem >> 9) * 0x537); 519 int bits = (data << 10 | rem) ^ 0x5412; // uint15 520 assert(bits >> 15 == 0); 521 522 // Draw first copy 523 for (int i = 0; i <= 5; i++) 524 setModule(qrcode, 8, i, getBit(bits, i)); 525 setModule(qrcode, 8, 7, getBit(bits, 6)); 526 setModule(qrcode, 8, 8, getBit(bits, 7)); 527 setModule(qrcode, 7, 8, getBit(bits, 8)); 528 for (int i = 9; i < 15; i++) 529 setModule(qrcode, 14 - i, 8, getBit(bits, i)); 530 531 // Draw second copy 532 int qrsize = qrcodegen_getSize(qrcode); 533 for (int i = 0; i < 8; i++) 534 setModule(qrcode, qrsize - 1 - i, 8, getBit(bits, i)); 535 for (int i = 8; i < 15; i++) 536 setModule(qrcode, 8, qrsize - 15 + i, getBit(bits, i)); 537 setModule(qrcode, 8, qrsize - 8, true); // Always black 538 } 539 540 541 // Calculates and stores an ascending list of positions of alignment patterns 542 // for this version number, returning the length of the list (in the range [0,7]). 543 // Each position is in the range [0,177), and are used on both the x and y axes. 544 // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes. 545 testable int getAlignmentPatternPositions(int version, uint8_t result[7]) { 546 if (version == 1) 547 return 0; 548 int numAlign = version / 7 + 2; 549 int step = (version == 32) ? 26 : 550 (version*4 + numAlign*2 + 1) / (numAlign*2 - 2) * 2; 551 for (int i = numAlign - 1, pos = version * 4 + 10; i >= 1; i--, pos -= step) 552 result[i] = pos; 553 result[0] = 6; 554 return numAlign; 555 } 556 557 558 // Sets every pixel in the range [left : left + width] * [top : top + height] to black. 559 static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]) { 560 for (int dy = 0; dy < height; dy++) { 561 for (int dx = 0; dx < width; dx++) 562 setModule(qrcode, left + dx, top + dy, true); 563 } 564 } 565 566 567 568 /*---- Drawing data modules and masking ----*/ 569 570 // Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of 571 // the QR Code to be black at function modules and white at codeword modules (including unused remainder bits). 572 static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]) { 573 int qrsize = qrcodegen_getSize(qrcode); 574 int i = 0; // Bit index into the data 575 // Do the funny zigzag scan 576 for (int right = qrsize - 1; right >= 1; right -= 2) { // Index of right column in each column pair 577 if (right == 6) 578 right = 5; 579 for (int vert = 0; vert < qrsize; vert++) { // Vertical counter 580 for (int j = 0; j < 2; j++) { 581 int x = right - j; // Actual x coordinate 582 bool upward = ((right + 1) & 2) == 0; 583 int y = upward ? qrsize - 1 - vert : vert; // Actual y coordinate 584 if (!getModule(qrcode, x, y) && i < dataLen * 8) { 585 bool black = getBit(data[i >> 3], 7 - (i & 7)); 586 setModule(qrcode, x, y, black); 587 i++; 588 } 589 // If this QR Code has any remainder bits (0 to 7), they were assigned as 590 // 0/false/white by the constructor and are left unchanged by this method 591 } 592 } 593 } 594 assert(i == dataLen * 8); 595 } 596 597 598 // XORs the codeword modules in this QR Code with the given mask pattern. 599 // The function modules must be marked and the codeword bits must be drawn 600 // before masking. Due to the arithmetic of XOR, calling applyMask() with 601 // the same mask value a second time will undo the mask. A final well-formed 602 // QR Code needs exactly one (not zero, two, etc.) mask applied. 603 static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask) { 604 assert(0 <= (int)mask && (int)mask <= 7); // Disallows qrcodegen_Mask_AUTO 605 int qrsize = qrcodegen_getSize(qrcode); 606 for (int y = 0; y < qrsize; y++) { 607 for (int x = 0; x < qrsize; x++) { 608 if (getModule(functionModules, x, y)) 609 continue; 610 bool invert; 611 switch ((int)mask) { 612 case 0: invert = (x + y) % 2 == 0; break; 613 case 1: invert = y % 2 == 0; break; 614 case 2: invert = x % 3 == 0; break; 615 case 3: invert = (x + y) % 3 == 0; break; 616 case 4: invert = (x / 3 + y / 2) % 2 == 0; break; 617 case 5: invert = x * y % 2 + x * y % 3 == 0; break; 618 case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; 619 case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; 620 default: assert(false); return; 621 } 622 bool val = getModule(qrcode, x, y); 623 setModule(qrcode, x, y, val ^ invert); 624 } 625 } 626 } 627 628 629 // Calculates and returns the penalty score based on state of the given QR Code's current modules. 630 // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. 631 static long getPenaltyScore(const uint8_t qrcode[]) { 632 int qrsize = qrcodegen_getSize(qrcode); 633 long result = 0; 634 635 // Adjacent modules in row having same color, and finder-like patterns 636 for (int y = 0; y < qrsize; y++) { 637 unsigned char runHistory[7] = {0}; 638 bool color = false; 639 unsigned char runX = 0; 640 for (int x = 0; x < qrsize; x++) { 641 if (getModule(qrcode, x, y) == color) { 642 runX++; 643 if (runX == 5) 644 result += PENALTY_N1; 645 else if (runX > 5) 646 result++; 647 } else { 648 addRunToHistory(runX, runHistory); 649 if (!color && hasFinderLikePattern(runHistory)) 650 result += PENALTY_N3; 651 color = getModule(qrcode, x, y); 652 runX = 1; 653 } 654 } 655 addRunToHistory(runX, runHistory); 656 if (color) 657 addRunToHistory(0, runHistory); // Dummy run of white 658 if (hasFinderLikePattern(runHistory)) 659 result += PENALTY_N3; 660 } 661 // Adjacent modules in column having same color, and finder-like patterns 662 for (int x = 0; x < qrsize; x++) { 663 unsigned char runHistory[7] = {0}; 664 bool color = false; 665 unsigned char runY = 0; 666 for (int y = 0; y < qrsize; y++) { 667 if (getModule(qrcode, x, y) == color) { 668 runY++; 669 if (runY == 5) 670 result += PENALTY_N1; 671 else if (runY > 5) 672 result++; 673 } else { 674 addRunToHistory(runY, runHistory); 675 if (!color && hasFinderLikePattern(runHistory)) 676 result += PENALTY_N3; 677 color = getModule(qrcode, x, y); 678 runY = 1; 679 } 680 } 681 addRunToHistory(runY, runHistory); 682 if (color) 683 addRunToHistory(0, runHistory); // Dummy run of white 684 if (hasFinderLikePattern(runHistory)) 685 result += PENALTY_N3; 686 } 687 688 // 2*2 blocks of modules having same color 689 for (int y = 0; y < qrsize - 1; y++) { 690 for (int x = 0; x < qrsize - 1; x++) { 691 bool color = getModule(qrcode, x, y); 692 if ( color == getModule(qrcode, x + 1, y) && 693 color == getModule(qrcode, x, y + 1) && 694 color == getModule(qrcode, x + 1, y + 1)) 695 result += PENALTY_N2; 696 } 697 } 698 699 // Balance of black and white modules 700 int black = 0; 701 for (int y = 0; y < qrsize; y++) { 702 for (int x = 0; x < qrsize; x++) { 703 if (getModule(qrcode, x, y)) 704 black++; 705 } 706 } 707 int total = qrsize * qrsize; // Note that size is odd, so black/total != 1/2 708 // Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)% 709 int k = (int)((labs(black * 20L - total * 10L) + total - 1) / total) - 1; 710 result += k * PENALTY_N4; 711 return result; 712 } 713 714 715 // Inserts the given value to the front of the given array, which shifts over the 716 // existing values and deletes the last value. A helper function for getPenaltyScore(). 717 static void addRunToHistory(unsigned char run, unsigned char history[7]) { 718 memmove(&history[1], &history[0], 6 * sizeof(history[0])); 719 history[0] = run; 720 } 721 722 723 // Tests whether the given run history has the pattern of ratio 1:1:3:1:1 in the middle, and 724 // surrounded by at least 4 on either or both ends. A helper function for getPenaltyScore(). 725 // Must only be called immediately after a run of white modules has ended. 726 static bool hasFinderLikePattern(const unsigned char runHistory[7]) { 727 unsigned char n = runHistory[1]; 728 // The maximum QR Code size is 177, hence the run length n <= 177. 729 // Arithmetic is promoted to int, so n*4 will not overflow. 730 return n > 0 && runHistory[2] == n && runHistory[4] == n && runHistory[5] == n 731 && runHistory[3] == n * 3 && (runHistory[0] >= n * 4 || runHistory[6] >= n * 4); 732 } 733 734 735 736 /*---- Basic QR Code information ----*/ 737 738 // Public function - see documentation comment in header file. 739 int qrcodegen_getSize(const uint8_t qrcode[]) { 740 assert(qrcode != NULL); 741 int result = qrcode[0]; 742 assert((qrcodegen_VERSION_MIN * 4 + 17) <= result 743 && result <= (qrcodegen_VERSION_MAX * 4 + 17)); 744 return result; 745 } 746 747 748 // Public function - see documentation comment in header file. 749 bool qrcodegen_getModule(const uint8_t qrcode[], int x, int y) { 750 assert(qrcode != NULL); 751 int qrsize = qrcode[0]; 752 return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y); 753 } 754 755 756 // Gets the module at the given coordinates, which must be in bounds. 757 testable bool getModule(const uint8_t qrcode[], int x, int y) { 758 int qrsize = qrcode[0]; 759 assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); 760 int index = y * qrsize + x; 761 return getBit(qrcode[(index >> 3) + 1], index & 7); 762 } 763 764 765 // Sets the module at the given coordinates, which must be in bounds. 766 testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack) { 767 int qrsize = qrcode[0]; 768 assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); 769 int index = y * qrsize + x; 770 int bitIndex = index & 7; 771 int byteIndex = (index >> 3) + 1; 772 if (isBlack) 773 qrcode[byteIndex] |= 1 << bitIndex; 774 else 775 qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF; 776 } 777 778 779 // Sets the module at the given coordinates, doing nothing if out of bounds. 780 testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack) { 781 int qrsize = qrcode[0]; 782 if (0 <= x && x < qrsize && 0 <= y && y < qrsize) 783 setModule(qrcode, x, y, isBlack); 784 } 785 786 787 // Returns true iff the i'th bit of x is set to 1. Requires x >= 0 and 0 <= i <= 14. 788 static bool getBit(int x, int i) { 789 return ((x >> i) & 1) != 0; 790 } 791 792 793 794 /*---- Segment handling ----*/ 795 796 // Public function - see documentation comment in header file. 797 bool qrcodegen_isAlphanumeric(const char *text) { 798 assert(text != NULL); 799 for (; *text != '\0'; text++) { 800 if (strchr(ALPHANUMERIC_CHARSET, *text) == NULL) 801 return false; 802 } 803 return true; 804 } 805 806 807 // Public function - see documentation comment in header file. 808 bool qrcodegen_isNumeric(const char *text) { 809 assert(text != NULL); 810 for (; *text != '\0'; text++) { 811 if (*text < '0' || *text > '9') 812 return false; 813 } 814 return true; 815 } 816 817 818 // Public function - see documentation comment in header file. 819 size_t qrcodegen_calcSegmentBufferSize(enum qrcodegen_Mode mode, size_t numChars) { 820 int temp = calcSegmentBitLength(mode, numChars); 821 if (temp == -1) 822 return SIZE_MAX; 823 assert(0 <= temp && temp <= INT16_MAX); 824 return ((size_t)temp + 7) / 8; 825 } 826 827 828 // Returns the number of data bits needed to represent a segment 829 // containing the given number of characters using the given mode. Notes: 830 // - Returns -1 on failure, i.e. numChars > INT16_MAX or 831 // the number of needed bits exceeds INT16_MAX (i.e. 32767). 832 // - Otherwise, all valid results are in the range [0, INT16_MAX]. 833 // - For byte mode, numChars measures the number of bytes, not Unicode code points. 834 // - For ECI mode, numChars must be 0, and the worst-case number of bits is returned. 835 // An actual ECI segment can have shorter data. For non-ECI modes, the result is exact. 836 testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars) { 837 // All calculations are designed to avoid overflow on all platforms 838 if (numChars > (unsigned int)INT16_MAX) 839 return -1; 840 long result = (long)numChars; 841 if (mode == qrcodegen_Mode_NUMERIC) 842 result = (result * 10 + 2) / 3; // ceil(10/3 * n) 843 else if (mode == qrcodegen_Mode_ALPHANUMERIC) 844 result = (result * 11 + 1) / 2; // ceil(11/2 * n) 845 else if (mode == qrcodegen_Mode_BYTE) 846 result *= 8; 847 else if (mode == qrcodegen_Mode_KANJI) 848 result *= 13; 849 else if (mode == qrcodegen_Mode_ECI && numChars == 0) 850 result = 3 * 8; 851 else { // Invalid argument 852 assert(false); 853 return -1; 854 } 855 assert(result >= 0); 856 if ((unsigned int)result > (unsigned int)INT16_MAX) 857 return -1; 858 return (int)result; 859 } 860 861 862 // Public function - see documentation comment in header file. 863 struct qrcodegen_Segment qrcodegen_makeBytes(const uint8_t data[], size_t len, uint8_t buf[]) { 864 assert(data != NULL || len == 0); 865 struct qrcodegen_Segment result; 866 result.mode = qrcodegen_Mode_BYTE; 867 result.bitLength = calcSegmentBitLength(result.mode, len); 868 assert(result.bitLength != -1); 869 result.numChars = (int)len; 870 if (len > 0) 871 memcpy(buf, data, len * sizeof(buf[0])); 872 result.data = buf; 873 return result; 874 } 875 876 877 // Public function - see documentation comment in header file. 878 struct qrcodegen_Segment qrcodegen_makeNumeric(const char *digits, uint8_t buf[]) { 879 assert(digits != NULL); 880 struct qrcodegen_Segment result; 881 size_t len = strlen(digits); 882 result.mode = qrcodegen_Mode_NUMERIC; 883 int bitLen = calcSegmentBitLength(result.mode, len); 884 assert(bitLen != -1); 885 result.numChars = (int)len; 886 if (bitLen > 0) 887 memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0])); 888 result.bitLength = 0; 889 890 unsigned int accumData = 0; 891 int accumCount = 0; 892 for (; *digits != '\0'; digits++) { 893 char c = *digits; 894 assert('0' <= c && c <= '9'); 895 accumData = accumData * 10 + (unsigned int)(c - '0'); 896 accumCount++; 897 if (accumCount == 3) { 898 appendBitsToBuffer(accumData, 10, buf, &result.bitLength); 899 accumData = 0; 900 accumCount = 0; 901 } 902 } 903 if (accumCount > 0) // 1 or 2 digits remaining 904 appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength); 905 assert(result.bitLength == bitLen); 906 result.data = buf; 907 return result; 908 } 909 910 911 // Public function - see documentation comment in header file. 912 struct qrcodegen_Segment qrcodegen_makeAlphanumeric(const char *text, uint8_t buf[]) { 913 assert(text != NULL); 914 struct qrcodegen_Segment result; 915 size_t len = strlen(text); 916 result.mode = qrcodegen_Mode_ALPHANUMERIC; 917 int bitLen = calcSegmentBitLength(result.mode, len); 918 assert(bitLen != -1); 919 result.numChars = (int)len; 920 if (bitLen > 0) 921 memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0])); 922 result.bitLength = 0; 923 924 unsigned int accumData = 0; 925 int accumCount = 0; 926 for (; *text != '\0'; text++) { 927 const char *temp = strchr(ALPHANUMERIC_CHARSET, *text); 928 assert(temp != NULL); 929 accumData = accumData * 45 + (unsigned int)(temp - ALPHANUMERIC_CHARSET); 930 accumCount++; 931 if (accumCount == 2) { 932 appendBitsToBuffer(accumData, 11, buf, &result.bitLength); 933 accumData = 0; 934 accumCount = 0; 935 } 936 } 937 if (accumCount > 0) // 1 character remaining 938 appendBitsToBuffer(accumData, 6, buf, &result.bitLength); 939 assert(result.bitLength == bitLen); 940 result.data = buf; 941 return result; 942 } 943 944 945 // Public function - see documentation comment in header file. 946 struct qrcodegen_Segment qrcodegen_makeEci(long assignVal, uint8_t buf[]) { 947 struct qrcodegen_Segment result; 948 result.mode = qrcodegen_Mode_ECI; 949 result.numChars = 0; 950 result.bitLength = 0; 951 if (assignVal < 0) { 952 assert(false); 953 } else if (assignVal < (1 << 7)) { 954 memset(buf, 0, 1 * sizeof(buf[0])); 955 appendBitsToBuffer(assignVal, 8, buf, &result.bitLength); 956 } else if (assignVal < (1 << 14)) { 957 memset(buf, 0, 2 * sizeof(buf[0])); 958 appendBitsToBuffer(2, 2, buf, &result.bitLength); 959 appendBitsToBuffer(assignVal, 14, buf, &result.bitLength); 960 } else if (assignVal < 1000000L) { 961 memset(buf, 0, 3 * sizeof(buf[0])); 962 appendBitsToBuffer(6, 3, buf, &result.bitLength); 963 appendBitsToBuffer(assignVal >> 10, 11, buf, &result.bitLength); 964 appendBitsToBuffer(assignVal & 0x3FF, 10, buf, &result.bitLength); 965 } else { 966 assert(false); 967 } 968 result.data = buf; 969 return result; 970 } 971 972 973 // Calculates the number of bits needed to encode the given segments at the given version. 974 // Returns a non-negative number if successful. Otherwise returns -1 if a segment has too 975 // many characters to fit its length field, or the total bits exceeds INT16_MAX. 976 testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version) { 977 assert(segs != NULL || len == 0); 978 long result = 0; 979 for (size_t i = 0; i < len; i++) { 980 int numChars = segs[i].numChars; 981 int bitLength = segs[i].bitLength; 982 assert(0 <= numChars && numChars <= INT16_MAX); 983 assert(0 <= bitLength && bitLength <= INT16_MAX); 984 int ccbits = numCharCountBits(segs[i].mode, version); 985 assert(0 <= ccbits && ccbits <= 16); 986 if (numChars >= (1L << ccbits)) 987 return -1; // The segment's length doesn't fit the field's bit width 988 result += 4L + ccbits + bitLength; 989 if (result > INT16_MAX) 990 return -1; // The sum might overflow an int type 991 } 992 assert(0 <= result && result <= INT16_MAX); 993 return (int)result; 994 } 995 996 997 // Returns the bit width of the character count field for a segment in the given mode 998 // in a QR Code at the given version number. The result is in the range [0, 16]. 999 static int numCharCountBits(enum qrcodegen_Mode mode, int version) { 1000 assert(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); 1001 int i = (version + 7) / 17; 1002 switch (mode) { 1003 case qrcodegen_Mode_NUMERIC : { static const int temp[] = {10, 12, 14}; return temp[i]; } 1004 case qrcodegen_Mode_ALPHANUMERIC: { static const int temp[] = { 9, 11, 13}; return temp[i]; } 1005 case qrcodegen_Mode_BYTE : { static const int temp[] = { 8, 16, 16}; return temp[i]; } 1006 case qrcodegen_Mode_KANJI : { static const int temp[] = { 8, 10, 12}; return temp[i]; } 1007 case qrcodegen_Mode_ECI : return 0; 1008 default: assert(false); return -1; // Dummy value 1009 } 1010 } 1011 1012 int qrcodegen_getMinFitVersion(enum qrcodegen_Ecc ecl, size_t dataLen) 1013 { 1014 struct qrcodegen_Segment seg; 1015 seg.mode = qrcodegen_Mode_BYTE; 1016 seg.bitLength = calcSegmentBitLength(seg.mode, dataLen); 1017 seg.numChars = (int)dataLen; 1018 1019 for (int version = qrcodegen_VERSION_MIN; version <= qrcodegen_VERSION_MAX; version++) { 1020 int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; // Number of data bits available 1021 int dataUsedBits = getTotalBits(&seg, 1, version); 1022 if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits) 1023 return version; 1024 } 1025 return -1; 1026 } 1027 1028 int qrcodegen_version2size(int version) 1029 { 1030 if (version < qrcodegen_VERSION_MIN || version > qrcodegen_VERSION_MAX) { 1031 return -1; 1032 } 1033 1034 return ((version - 1)*4 + 21); 1035 }