acid-drop- Hacking the planet from a LilyGo T-Deck using custom firmware |
git clone git://git.acid.vegas/acid-drop.git |
Log | Files | Refs | Archive | README | LICENSE |
User_Setup.h (18326B)
1 // USER DEFINED SETTINGS 2 // Set driver type, fonts to be loaded, pins used and SPI control method etc 3 // 4 // See the User_Setup_Select.h file if you wish to be able to define multiple 5 // setups and then easily select which setup file is used by the compiler. 6 // 7 // If this file is edited correctly then all the library example sketches should 8 // run without the need to make any more changes for a particular hardware setup! 9 // Note that some sketches are designed for a particular TFT pixel width/height 10 11 // User defined information reported by "Read_User_Setup" test & diagnostics example 12 #define USER_SETUP_INFO "User_Setup" 13 14 // Define to disable all #warnings in library (can be put in User_Setup_Select.h) 15 //#define DISABLE_ALL_LIBRARY_WARNINGS 16 17 // ################################################################################## 18 // 19 // Section 1. Call up the right driver file and any options for it 20 // 21 // ################################################################################## 22 23 // Define STM32 to invoke optimised processor support (only for STM32) 24 //#define STM32 25 26 // Defining the STM32 board allows the library to optimise the performance 27 // for UNO compatible "MCUfriend" style shields 28 //#define NUCLEO_64_TFT 29 //#define NUCLEO_144_TFT 30 31 // STM32 8 bit parallel only: 32 // If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7 33 // then this will improve rendering performance by a factor of ~8x 34 //#define STM_PORTA_DATA_BUS 35 //#define STM_PORTB_DATA_BUS 36 37 // Tell the library to use parallel mode (otherwise SPI is assumed) 38 //#define TFT_PARALLEL_8_BIT 39 //#defined TFT_PARALLEL_16_BIT // **** 16 bit parallel ONLY for RP2040 processor **** 40 41 // Display type - only define if RPi display 42 //#define RPI_DISPLAY_TYPE // 20MHz maximum SPI 43 44 // Only define one driver, the other ones must be commented out 45 #define ILI9341_DRIVER // Generic driver for common displays 46 //#define ILI9341_2_DRIVER // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172 47 //#define ST7735_DRIVER // Define additional parameters below for this display 48 //#define ILI9163_DRIVER // Define additional parameters below for this display 49 //#define S6D02A1_DRIVER 50 //#define RPI_ILI9486_DRIVER // 20MHz maximum SPI 51 //#define HX8357D_DRIVER 52 //#define ILI9481_DRIVER 53 //#define ILI9486_DRIVER 54 //#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high) 55 //#define ST7789_DRIVER // Full configuration option, define additional parameters below for this display 56 //#define ST7789_2_DRIVER // Minimal configuration option, define additional parameters below for this display 57 //#define R61581_DRIVER 58 //#define RM68140_DRIVER 59 //#define ST7796_DRIVER 60 //#define SSD1351_DRIVER 61 //#define SSD1963_480_DRIVER 62 //#define SSD1963_800_DRIVER 63 //#define SSD1963_800ALT_DRIVER 64 //#define ILI9225_DRIVER 65 //#define GC9A01_DRIVER 66 67 // Some displays support SPI reads via the MISO pin, other displays have a single 68 // bi-directional SDA pin and the library will try to read this via the MOSI line. 69 // To use the SDA line for reading data from the TFT uncomment the following line: 70 71 // #define TFT_SDA_READ // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only 72 73 // For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display 74 // Try ONE option at a time to find the correct colour order for your display 75 76 // #define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue 77 // #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red 78 79 // For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below 80 81 // #define M5STACK 82 83 // For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation 84 // #define TFT_WIDTH 80 85 // #define TFT_WIDTH 128 86 // #define TFT_WIDTH 172 // ST7789 172 x 320 87 // #define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320 88 // #define TFT_HEIGHT 160 89 // #define TFT_HEIGHT 128 90 // #define TFT_HEIGHT 240 // ST7789 240 x 240 91 // #define TFT_HEIGHT 320 // ST7789 240 x 320 92 // #define TFT_HEIGHT 240 // GC9A01 240 x 240 93 94 // For ST7735 ONLY, define the type of display, originally this was based on the 95 // colour of the tab on the screen protector film but this is not always true, so try 96 // out the different options below if the screen does not display graphics correctly, 97 // e.g. colours wrong, mirror images, or stray pixels at the edges. 98 // Comment out ALL BUT ONE of these options for a ST7735 display driver, save this 99 // this User_Setup file, then rebuild and upload the sketch to the board again: 100 101 // #define ST7735_INITB 102 // #define ST7735_GREENTAB 103 // #define ST7735_GREENTAB2 104 // #define ST7735_GREENTAB3 105 // #define ST7735_GREENTAB128 // For 128 x 128 display 106 // #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset) 107 // #define ST7735_ROBOTLCD // For some RobotLCD arduino shields (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT) 108 // #define ST7735_REDTAB 109 // #define ST7735_BLACKTAB 110 // #define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset 111 112 // If colours are inverted (white shows as black) then uncomment one of the next 113 // 2 lines try both options, one of the options should correct the inversion. 114 115 // #define TFT_INVERSION_ON 116 // #define TFT_INVERSION_OFF 117 118 119 // ################################################################################## 120 // 121 // Section 2. Define the pins that are used to interface with the display here 122 // 123 // ################################################################################## 124 125 // If a backlight control signal is available then define the TFT_BL pin in Section 2 126 // below. The backlight will be turned ON when tft.begin() is called, but the library 127 // needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be 128 // driven with a PWM signal or turned OFF/ON then this must be handled by the user 129 // sketch. e.g. with digitalWrite(TFT_BL, LOW); 130 131 // #define TFT_BL 32 // LED back-light control pin 132 // #define TFT_BACKLIGHT_ON HIGH // Level to turn ON back-light (HIGH or LOW) 133 134 135 136 // We must use hardware SPI, a minimum of 3 GPIO pins is needed. 137 // Typical setup for ESP8266 NodeMCU ESP-12 is : 138 // 139 // Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT) 140 // Display LED to NodeMCU pin VIN (or 5V, see below) 141 // Display SCK to NodeMCU pin D5 142 // Display SDI/MOSI to NodeMCU pin D7 143 // Display DC (RS/AO)to NodeMCU pin D3 144 // Display RESET to NodeMCU pin D4 (or RST, see below) 145 // Display CS to NodeMCU pin D8 (or GND, see below) 146 // Display GND to NodeMCU pin GND (0V) 147 // Display VCC to NodeMCU 5V or 3.3V 148 // 149 // The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin 150 // 151 // The DC (Data Command) pin may be labelled AO or RS (Register Select) 152 // 153 // With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more 154 // SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS 155 // line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin 156 // to be toggled during setup, so in these cases the TFT_CS line must be defined and connected. 157 // 158 // The NodeMCU D0 pin can be used for RST 159 // 160 // 161 // Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin 162 // If 5V is not available at a pin you can use 3.3V but backlight brightness 163 // will be lower. 164 165 166 // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ###### 167 168 // For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation 169 #define TFT_CS PIN_D8 // Chip select control pin D8 170 #define TFT_DC PIN_D3 // Data Command control pin 171 #define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) 172 //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V 173 174 //#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight control pin) 175 176 //#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen 177 178 //#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only 179 180 181 // ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ###### 182 183 // Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact 184 // but saves pins for other functions. It is best not to connect MISO as some displays 185 // do not tristate that line when chip select is high! 186 // Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller 187 // cannot be connected as well to the same SPI signals. 188 // On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode 189 // On NodeMCU V3 S0 =MISO, S1 =MOSI, S2 =SCLK 190 // In ESP8266 overlap mode the following must be defined 191 192 //#define TFT_SPI_OVERLAP 193 194 // In ESP8266 overlap mode the TFT chip select MUST connect to pin D3 195 //#define TFT_CS PIN_D3 196 //#define TFT_DC PIN_D5 // Data Command control pin 197 //#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) 198 //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V 199 200 201 // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ###### 202 203 // For ESP32 Dev board (only tested with ILI9341 display) 204 // The hardware SPI can be mapped to any pins 205 206 //#define TFT_MISO 19 207 //#define TFT_MOSI 23 208 //#define TFT_SCLK 18 209 //#define TFT_CS 15 // Chip select control pin 210 //#define TFT_DC 2 // Data Command control pin 211 //#define TFT_RST 4 // Reset pin (could connect to RST pin) 212 //#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST 213 214 // For ESP32 Dev board (only tested with GC9A01 display) 215 // The hardware SPI can be mapped to any pins 216 217 //#define TFT_MOSI 15 // In some display driver board, it might be written as "SDA" and so on. 218 //#define TFT_SCLK 14 219 //#define TFT_CS 5 // Chip select control pin 220 //#define TFT_DC 27 // Data Command control pin 221 //#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) 222 //#define TFT_BL 22 // LED back-light 223 224 //#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen 225 226 //#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only 227 228 // For the M5Stack module use these #define lines 229 //#define TFT_MISO 19 230 //#define TFT_MOSI 23 231 //#define TFT_SCLK 18 232 //#define TFT_CS 14 // Chip select control pin 233 //#define TFT_DC 27 // Data Command control pin 234 //#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) 235 //#define TFT_BL 32 // LED back-light (required for M5Stack) 236 237 // ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ###### 238 239 // The library supports 8 bit parallel TFTs with the ESP32, the pin 240 // selection below is compatible with ESP32 boards in UNO format. 241 // Wemos D32 boards need to be modified, see diagram in Tools folder. 242 // Only ILI9481 and ILI9341 based displays have been tested! 243 244 // Parallel bus is only supported for the STM32 and ESP32 245 // Example below is for ESP32 Parallel interface with UNO displays 246 247 // Tell the library to use 8 bit parallel mode (otherwise SPI is assumed) 248 //#define TFT_PARALLEL_8_BIT 249 250 // The ESP32 and TFT the pins used for testing are: 251 //#define TFT_CS 33 // Chip select control pin (library pulls permanently low 252 //#define TFT_DC 15 // Data Command control pin - must use a pin in the range 0-31 253 //#define TFT_RST 32 // Reset pin, toggles on startup 254 255 //#define TFT_WR 4 // Write strobe control pin - must use a pin in the range 0-31 256 //#define TFT_RD 2 // Read strobe control pin 257 258 //#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus 259 //#define TFT_D1 13 // so a single register write sets/clears all bits. 260 //#define TFT_D2 26 // Pins can be randomly assigned, this does not affect 261 //#define TFT_D3 25 // TFT screen update performance. 262 //#define TFT_D4 17 263 //#define TFT_D5 16 264 //#define TFT_D6 27 265 //#define TFT_D7 14 266 267 // ###### EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP ###### 268 269 // The TFT can be connected to SPI port 1 or 2 270 //#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz 271 //#define TFT_MOSI PA7 272 //#define TFT_MISO PA6 273 //#define TFT_SCLK PA5 274 275 //#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz 276 //#define TFT_MOSI PB15 277 //#define TFT_MISO PB14 278 //#define TFT_SCLK PB13 279 280 // Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select 281 //#define TFT_CS D5 // Chip select control pin to TFT CS 282 //#define TFT_DC D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select) 283 //#define TFT_RST D7 // Reset pin to TFT RST (or RESET) 284 // OR alternatively, we can use STM32 port reference names PXnn 285 //#define TFT_CS PE11 // Nucleo-F767ZI equivalent of D5 286 //#define TFT_DC PE9 // Nucleo-F767ZI equivalent of D6 287 //#define TFT_RST PF13 // Nucleo-F767ZI equivalent of D7 288 289 //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to processor reset 290 // Use an Arduino pin for initial testing as connecting to processor reset 291 // may not work (pulse too short at power up?) 292 293 // ################################################################################## 294 // 295 // Section 3. Define the fonts that are to be used here 296 // 297 // ################################################################################## 298 299 // Comment out the #defines below with // to stop that font being loaded 300 // The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not 301 // normally necessary. If all fonts are loaded the extra FLASH space required is 302 // about 17Kbytes. To save FLASH space only enable the fonts you need! 303 304 #define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH 305 #define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters 306 #define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters 307 #define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm 308 #define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-. 309 #define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-. 310 //#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT 311 #define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts 312 313 // Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded 314 // this will save ~20kbytes of FLASH 315 #define SMOOTH_FONT 316 317 318 // ################################################################################## 319 // 320 // Section 4. Other options 321 // 322 // ################################################################################## 323 324 // For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface. 325 //#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface 326 327 // For RP2040 processor and 8 or 16 bit parallel displays: 328 // The parallel interface write cycle period is derived from a division of the CPU clock 329 // speed so scales with the processor clock. This means that the divider ratio may need 330 // to be increased when overclocking. I may also need to be adjusted dependant on the 331 // display controller type (ILI94341, HX8357C etc). If RP2040_PIO_CLK_DIV is not defined 332 // the library will set default values which may not suit your display. 333 // The display controller data sheet will specify the minimum write cycle period. The 334 // controllers often work reliably for shorter periods, however if the period is too short 335 // the display may not initialise or graphics will become corrupted. 336 // PIO write cycle frequency = (CPU clock/(4 * RP2040_PIO_CLK_DIV)) 337 //#define RP2040_PIO_CLK_DIV 1 // 32ns write cycle at 125MHz CPU clock 338 //#define RP2040_PIO_CLK_DIV 2 // 64ns write cycle at 125MHz CPU clock 339 //#define RP2040_PIO_CLK_DIV 3 // 96ns write cycle at 125MHz CPU clock 340 341 // For the RP2040 processor define the SPI port channel used (default 0 if undefined) 342 //#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used 343 344 // For the STM32 processor define the SPI port channel used (default 1 if undefined) 345 //#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2 346 347 // Define the SPI clock frequency, this affects the graphics rendering speed. Too 348 // fast and the TFT driver will not keep up and display corruption appears. 349 // With an ILI9341 display 40MHz works OK, 80MHz sometimes fails 350 // With a ST7735 display more than 27MHz may not work (spurious pixels and lines) 351 // With an ILI9163 display 27 MHz works OK. 352 353 // #define SPI_FREQUENCY 1000000 354 // #define SPI_FREQUENCY 5000000 355 // #define SPI_FREQUENCY 10000000 356 // #define SPI_FREQUENCY 20000000 357 #define SPI_FREQUENCY 27000000 358 // #define SPI_FREQUENCY 40000000 359 // #define SPI_FREQUENCY 55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz) 360 // #define SPI_FREQUENCY 80000000 361 362 // Optional reduced SPI frequency for reading TFT 363 #define SPI_READ_FREQUENCY 20000000 364 365 // The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: 366 #define SPI_TOUCH_FREQUENCY 2500000 367 368 // The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default. 369 // If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam) 370 // then uncomment the following line: 371 //#define USE_HSPI_PORT 372 373 // Comment out the following #define if "SPI Transactions" do not need to be 374 // supported. When commented out the code size will be smaller and sketches will 375 // run slightly faster, so leave it commented out unless you need it! 376 377 // Transaction support is needed to work with SD library but not needed with TFT_SdFat 378 // Transaction support is required if other SPI devices are connected. 379 380 // Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex) 381 // so changing it here has no effect 382 383 // #define SUPPORT_TRANSACTIONS